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H I G H L I G H T S

� Estimation of the evolutionary rate without knowing the phylogenetic tree.
� We study a tree-free evolutionary model based on the Yule process and Brownian motion.
� We compute the asymptotic variance of the trait disparity for phylogenetically correlated samples.

a r t i c l e i n f o

Article history:
Received 16 September 2014
Received in revised form
14 January 2015
Accepted 18 January 2015
Available online 28 January 2015

Keywords:
Branching Brownian motion
Conditioned branching process
Tree-free phylogenetic comparative method
Quantitative trait evolution
Yule process

a b s t r a c t

We consider a branching particle system where particles reproduce according to the pure birth Yule
process with the birth rate λ, conditioned on the observed number of particles to be equal to n. Particles
are assumed to move independently on the real line according to the Brownian motion with the local
variance σ2. In this paper we treat n particles as a sample of related species. The spatial Brownian motion
of a particle describes the development of a trait value of interest (e.g. log-body-size). We propose an
unbiased estimator Rn2 of the evolutionary rate ρ2 ¼ σ2=λ. The estimator Rn2 is proportional to the sample
variance Sn

2 computed from n trait values. We find an approximate formula for the standard error of Rn2

based on a neat asymptotic relation for the variance of Sn
2.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Biodiversity within a group of n related species could be
quantified by comparing suitable trait values. For some key trait
values like log-body-size, researchers apply the Brownian motion
model proposed by Felsenstein (1985). It is assumed that the
current trait values ðXðnÞ

1 ;…;XðnÞ
n Þ have evolved from the common

ancestral state X0 as a branching Brownian motion with the local
variance σ2. Given a phylogenetic tree describing the ancestral
history of the group of species the Brownian trajectories of the
trait values for sister species are assumed to evolve independently
after the ancestor species splits in two daughter species. The
resulting phylogenetic sample ðXðnÞ

1 ;…;XðnÞ
n Þ consists of identically

distributed normal random variables with a dependence structure
caused by the underlying phylogenetic signal.

A mathematically appealing and biologically motivated version
of the phylogenetic sample model assumes that the phylogenetic

tree behind the normally distributed trait values ðXðnÞ
1 ;…;XðnÞ

n Þ is
unknown. As a natural first choice to model the unknown species
tree, we use the Yule process with birth rate λ (see Yule, 1924).
Since the phylogenetic sample size is given, n, the Yule process
should be conditioned on having n tips: such conditioned branch-
ing processes have received significant attention in recent years,
due to e.g. Aldous and Popovic (2005), Gernhard (2008), Mooers
et al. (2012), Stadler (2009, 2011), and Stadler and Steel (2012).
This “tree-free” approach for phylogenetic comparative methods
was previously addressed by Sagitov and Bartoszek (2012),
Crawford and Suchard (2013) and Mulder and Crawford (2015)
(much earlier Edwards, 1970 used a related branching Brownian
process as a population genetics model).

In our work we show that a properly scaled sample variance is
an unbiased and consistent estimator of the compound parameter
ρ2 ¼ σ2=λ which we call the evolutionary rate of the trait value in
question. Our main mathematical result, Theorem 2.1, gives an
asymptotic expression for the variance of the phylogenetic sample
variance. This result leads to a simple asymptotic formula for the
estimated standard error of our estimator. Our result is in agree-
ment with the work of Crawford and Suchard (2013) whose
simulations indicate that their approximate maximum likelihood
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procedure yields an unbiased consistent estimator of σ2. This is
illustrated using the example of the Carnivora order studied
previously by Crawford and Suchard (2013).

The phenotype modelled by a Brownian motion is usually
interpreted as the case of neutral evolution with a random noise
around the ancestral state. This model was later developed into an
adaptive evolutionary model based on the Ornstein–Uhlenbeck
process by Felsenstein (1988), Hansen (1997), Butler and King
(2004), Hansen et al. (2008), and Bartoszek et al. (2012). The tree-
free setting using the Ornstein–Uhlenbeck process was addressed
by Bartoszek and Sagitov (2015) where for the Yule–Ornstein–
Uhlenbeck model, some phylogenetic confidence intervals for the
optimal trait value were obtained via three limit theorems for the
phylogenetic sample mean. Furthermore, it was shown that the
phylogenetic sample variance is an unbiased consistent estimator
of the stationary variance of the process.

At the end of their discussion Crawford and Suchard (2013)
write that as the tree of life is refined interest in “tree-free”
estimation methods may diminish. They however indicate that
“tree-free” estimates may be useful to calculate starting points for
simulation analysis. We certainly agree with the second statement
but believe that development of “tree-free” methods should
proceed alongside that of “tree-based” ones.

One of the most useful features of the “tree-free” comparative
models is that they offer a natural method of tree growth allowing for
study of theoretical properties of phylogenetic comparative models.
This is a field receiving more and more attention in recent years (e.g.
Gascuel and Steel, 2014; Ho and Ané, 2014a,b). A fundamental setup to
consider is the pure-birth Yule tree. Statistical results for processes
evolving on top of such a tree is developed in this work (and also
Sagitov and Bartoszek, 2012; Crawford and Suchard, 2013; Bartoszek,
2014; Mossel and Steel, 2014; Bartoszek and Sagitov, 2015). Another
alternative to studying estimators of parameters of such processes is
the tree growth model proposed by Ané (2008), Ho and Ané (2013),
and Ané et al. (2014). In this setup the total height of the tree is kept
fixed and new tips are added to randomly chosen branches (however
Ané et al., 2014 also discuss more general setups). These two
approaches seem to be in agreement, at least up to the second
moments, since e.g. they agree on the lack of consistency of estimating
X0. In Sagitov and Bartoszek (2012) we showed that under the Yule
Brownian motion model Var½Xn�-2σ2.

In a practical situation “tree-free” methods can be used for a
number of purposes. Firstly as pointed out by Crawford and
Suchard (2013) they can be useful for calculating starting points
for further numerical estimation procedures or defining prior
distributions in a Bayesian setting. Secondly they have to be used
in a situation where the tree is actually unknown, e.g. whenwe are
studying fossil data or nearly very difficult to infer. For example,
the phylogenies of insects are characterized by multiple recent
radiations. In such a situation the support of many internal nodes
can be close to zero—we do not have enough signal to place them
even though we do not suspect polytomies. Piwczyński et al.'s
(2014) molecular phylogeny of flesh flies can serve as a model
example—their Bayesian analysis could not converge, while max-
imum likelihood trees had very low support for many internal
nodes. Thirdly “tree-free” methods can be useful for making
predictive statements about future phenotypes, e.g. development
of viruses. Finally they can be used for various sanity checks. If
they contradict “tree-based” results this could indicate that the
numerical method fell into a local maximum.

The paper has the following structure. Section 2 presents the
model, the main results and an application. In Section 3 we state
two lemmas characterizing the coalescent time of a Yule tree
needed for the proof of Proposition 4.1. Section 4 states two
further lemmas and a proposition directly yielding the assertion of
Theorem 2.1. Proposition 4.1 deals with the covariances between
coalescent times for randomly chosen pairs of tips from a random
Yule n-tree.

2. The main results

The basic evolutionary model considered in this paper is
characterized by four parameters ðλ;n;X0; σ

2Þ and consists of two
stochastic components: a random phylogenetic tree defined by
parameters ðλ;nÞ and a trait evolution process along a lineage
defined by parameters ðX0; σ

2Þ. The first component, species tree
connecting n extant species, is modelled by the pure birth Yule
process (Yule, 1924) with the birth (speciation) rate λ and condi-
tioned on having n tips (Gernhard, 2008). For the second compo-
nent we adapt the approach by assuming that for a given
i¼ 1;…;n, the current trait value XðnÞ

i has evolved from the

Fig. 1. Left: True and simulated values of E S2n
h i

, right: simulated values of Var½S2n� with limit equalling π2=6þ1. Each point comes from 10 000 simulated Yule trees and
Brownian motions on top of them. Parameters used in simulations are λ¼ 1, X0 ¼ 0 and σ2 ¼ 1. The grey line on the right panel fits a curve based on the convergence rate
Oðn�1logn2Þ.
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