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H I G H L I G H T S

� Disease control efforts are often constrained by limited resources.
� Limited resources can be used more effectively by leveraging network information.
� We compare four link removal algorithms to prevent disease spread under a budget.
� Optimal quarantining performs best for large budgets and structured networks.
� Knowing where an outbreak begins is most valuable at moderate budget levels.
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a b s t r a c t

For many communicable diseases, knowledge of the underlying contact network through which the
disease spreads is essential to determining appropriate control measures. When behavior change is the
primary intervention for disease prevention, it is important to understand how to best modify network
connectivity using the limited resources available to control disease spread. We describe and compare four
algorithms for selecting a limited number of links to remove from a network: two “preventive” approaches
(edge centrality, R0 minimization), where the decision of which links to remove is made prior to any
disease outbreak and depends only on the network structure; and two “reactive” approaches (S–I edge
centrality, optimal quarantining), where information about the initial disease states of the nodes is
incorporated into the decision of which links to remove. We evaluate the performance of these algorithms
in minimizing the total number of infections that occur over the course of an acute outbreak of disease. We
consider different network structures, including both static and dynamic Erdös–Rényi random networks
with varying levels of connectivity, a real-world network of residential hotels connected through injection
drug use, and a network exhibiting community structure. We show that reactive approaches outperform
preventive approaches in averting infections. Among reactive approaches, removing links in order of
S–I edge centrality is favored when the link removal budget is small, while optimal quarantining performs
best when the link removal budget is sufficiently large. The budget threshold above which optimal
quarantining outperforms the S–I edge centrality algorithm is a function of both network structure (higher
for unstructured Erdös–Rényi random networks compared to networks with community structure or the
real-world network) and disease infectiousness (lower for highly infectious diseases). We conduct a value-
of-information analysis of knowing which nodes are initially infected by comparing the performance
improvement achieved by reactive over preventive strategies. We find that such information is most
valuable for moderate budget levels, with increasing value as disease spread becomes more likely (due to
either increased connectedness of the network or increased infectiousness of the disease).

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Despite remarkable progress in the past century, infectious
diseases continue to cause millions of deaths worldwide every
year (Fauci, 2001; Morens et al., 2004; Arias and Murray, 2009). A
variety of approaches can be used to prevent such diseases and
control their spread, including vaccination, treatment, changing

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/yjtbi

Journal of Theoretical Biology

http://dx.doi.org/10.1016/j.jtbi.2015.02.005
0022-5193/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ1 612 626 4581.
E-mail addresses: eenns@umn.edu (E.A. Enns),

brandeau@stanford.edu (M.L. Brandeau).

Journal of Theoretical Biology 371 (2015) 154–165

www.sciencedirect.com/science/journal/00225193
www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2015.02.005
http://dx.doi.org/10.1016/j.jtbi.2015.02.005
http://dx.doi.org/10.1016/j.jtbi.2015.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2015.02.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2015.02.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2015.02.005&domain=pdf
mailto:eenns@umn.edu
mailto:brandeau@stanford.edu
http://dx.doi.org/10.1016/j.jtbi.2015.02.005


risk behaviors, and quarantining. However, implementation of
these measures is often constrained by limited budgets, time,
and/or personnel, necessitating difficult decisions about how to
best allocate these scarce resources to prevent disease spread.

The way in which individuals and populations come into contact
with each other influences how a disease spreads as well as which
control measures are most effective. These contact patterns can be
represented as a contact network, with nodes representing indivi-
duals (or groups of individuals) and links representing contacts that
have the potential for disease transmission from one node to another.
Different aspects of network structure have been demonstrated to
influence the severity of an epidemic and the speed and extent of its
spread (Ganesh et al., 2005; Chakrabarti et al., 2008; Youssef and
Scoglio, 2011; Watts and Strogatz, 1998; Newman and Watts, 1999;
Moore and Newman, 2000; Jackson and Rogers, 2007; May and Lloyd,
2001; Pastor-Satorras and Vespignani, 2001, 2002a; Eames, 2008;
Miller, 2009; Newman, 2003; House and Keeling, 2011). For example,
for the same average number of contacts, an epidemic is more likely
to occur in networks with highly heterogeneous contact distributions
(Jackson and Rogers, 2007; May and Lloyd, 2001; Pastor-Satorras and
Vespignani, 2001, 2002a). This is illustrated in the extreme in the so-
called “scale-free” networks, where a small number of highly-
connected nodes act as hubs that facilitate rapid, near-unstoppable
disease spread (Pastor-Satorras and Vespignani, 2001, 2002a). In
contrast, diseases spread more slowly and less diffusely in highly
clustered networks (Eames, 2008; Miller, 2009; Newman, 2003;
House and Keeling, 2011); though a disease may quickly spread
locally within a densely connected cluster, it is less likely to escape the
cluster and cause a global outbreak in the network.

Given the importance of network structure to disease spread, it is
natural to consider whether and how network information can be
used to design more effective disease control interventions. A variety
of analyses have shown that interventions that make use of network
information outperform those that do not (Pastor-Satorras and
Vespignani, 2002b; Eubank et al., 2004; Miller and Hyman, 2007;
Hartvigsen et al., 2007; Salathé and Jones, 2010; Marcelino and
Kaiser, 2009). For example, Miller and Hyman (2007) compared
different vaccination strategies in a simulation model of person-to-
person contact in Portland, Oregon. They found that vaccinating
individuals with the greatest number of unvaccinated contacts was
more effective than random vaccination or vaccinating nodes with
the highest number of contacts. Marcelino and Kaiser (2009)
investigated flight cancellation as a means of preventing disease
spread between cities over the global air travel network. They
showed that canceling individual flight routes with the greatest edge
centrality (a measure of a link's importance in maintaining the
connectivity of the network) was more effective than simply shutting
down airports with the greatest number of flights.

Prior work on how to use network information to target inter-
ventions in a population has primarily focused on vaccinating critical
nodes in the network to prevent disease spread (Pastor-Satorras and
Vespignani, 2002b; Eubank et al., 2004; Miller and Hyman, 2007;
Hartvigsen et al., 2007). However, for many diseases, including
hepatitis C, HIV, many sexually transmitted infections, and emerging
influenza strains, a vaccine does not currently exist and behavior
change remains the primary intervention. In such cases, a network-
based intervention might instead focus on the interactions between
nodes that are particularly critical to disease spread.

A number of link removal approaches have been proposed. These
can be broadly classified along two dimensions. The first is whether
an approach is preventive or reactive. A preventive strategy seeks to
modify the network prior to an outbreak to make the network less
conducive to disease spread (Marcelino and Kaiser, 2009; Bishop and
Shames, 2011), while a reactive strategy assumes that the disease is
detected prior to intervention and information about which nodes
are initially infected is used to guide how links should be removed to

prevent further disease spread (Enns et al., 2012). In general, one
would expect reactive strategies to outperform preventive strategies
because of the availability of additional information. However, it is
unclear under what conditions this additional information is most
valuable and when it is unnecessary. The second dimension is
whether a strategy is rank-based or optimization-based. Rank-
based strategies remove links in order of a link's “importance” to
the network, which may be measured in terms of a link's between-
ness centrality (Girvan and Newman, 2002; Marcelino and Kaiser,
2009), bridgeness (Cheng et al., 2010), or a variety of other metrics
(Borgatti and Everett, 2006; De Meo et al., 2012). In contrast,
optimization-based strategies consider link removal more holistically
and identify a specific set of links to remove, which will change
depending on the link removal budget (Bishop and Shames, 2011;
Enns et al., 2012). Because there is no closed-form expression for the
expected number of infections over the course of a disease outbreak
in a contact network, optimization-based strategies must instead be
formulated in terms of surrogate objective functions relating to
network structure. The characterization of optimization-based stra-
tegies has therefore focused on establishing the algorithm's perfor-
mance in inducing the desired change in network structure. A
systematic evaluation of the impact of optimization-based link
removal strategies on the expected number of infections during an
outbreak has not yet been done.

In this paper, we compare four approaches to link removal,
spanning the four possible combinations of the preventive/reactive
and rank-based/optimization-based dimensions. In previous work,
we described an optimization-based approach to quarantining
infected nodes through link removal under resource constraints
and evaluated its performance in separating initially infected and
susceptible nodes in a static scenario (Enns et al., 2012). In this
paper, we evaluate this optimal quarantining approach and other
link removal algorithms as interventions to minimize the expected
number of infections over the course of a stochastically evolving
epidemic. In contrast to our prior work, where we only considered
whether a susceptible node could become infected, not the like-
lihood of infection, this analysis incorporates the differential risks of
infection faced by susceptible nodes based on their position in the
network relative to those initially infected as well as the possibility
of an outbreak dying out due to random chance.

In Section 2, we outline the link removal problem and describe
the four link removal algorithms with their underlying rationale. In
Section 3, we simulate acute outbreaks of disease for a variety of
disease characteristics and contact network structures (including
stochastically evolving networks) and compare the performance of
the link removal approaches in terms of the expected final outbreak
size as a function of the number of links that can be removed. We
evaluate the value of (perfect) surveillance information – that is, the
value of knowing which nodes are initially infected – by comparing
the relative performance of reactive vs. preventive strategies. We also
consider algorithm performance in the case of imperfect surveillance
information. Based on the results of these experiments, in Section 4,
we conclude with a summary of the network, disease, and budgetary
conditions under which different link removal approaches perform
best and surveillance information is most valuable.

2. Link removal algorithms

We consider a population of size N interacting through a contact
network, represented by an undirected N�N adjacency matrix, A,
where Aij ¼ 1 if node i and node j are connected (meaning that
individual i can transmit disease to individual j); otherwise, Aij ¼ 0.
Because we consider the case of an undirected network and
symmetric disease transmission, if Aij ¼ 1 then Aji ¼ 1. We assume
that a disease is introduced at time t¼0, with a small number of
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