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H I G H L I G H T S

� We propose to use Fourier power spectrum to cluster genes and genomes.
� We construct mathematical moments from the power spectrum.
� We perform phylogenetic analysis of genes and genomes based on moments.
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a b s t r a c t

A novel clustering method is proposed to classify genes and genomes. For a given DNA sequence, a
binary indicator sequence of each nucleotide is constructed, and Discrete Fourier Transform is applied on
these four sequences to attain respective power spectra. Mathematical moments are built from these
spectra, and multidimensional vectors of real numbers are constructed from these moments. Cluster
analysis is then performed in order to determine the evolutionary relationship between DNA sequences.
The novelty of this method is that sequences with different lengths can be compared easily via the use of
power spectra and moments. Experimental results on various datasets show that the proposed method
provides an efficient tool to classify genes and genomes. It not only gives comparable results but also is
remarkably faster than other multiple sequence alignment and alignment-free methods.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few decades, several methods to classify genes and
proteins have been proposed. Most of these methods are alignment-
based in which optimal alignments are obtained by using selected
scoring systems. These methods provide accurate classification of
biological sequences, and several algorithms have been developed
and successfully applied (Katoh et al., 2002; Edgar, 2004; Larkin
et al., 2007). Nevertheless, their major drawback is due to significantly
high time and memory consumption which is not suitable when a
quick clustering needs to be made, for example on a new deadly virus
(Marra et al., 2003). Henceforth, an alignment-free technique is a
trending method that often gives much faster classification on the

same dataset (Vinga and Almeida, 2003; Yau et al., 2008; Yu et al., 2011,
2013). For example, the k-mer method is among the most popular
alignment-free methods. In order to measure how different the two
sequences are, the set of k-mers, or subsequences of length k, in the
two biological sequences are collected and then the evolutionary
distance between them is computed (Vinga and Almeida, 2003;
Pandit and Sinha, 2010). The k-mer method gives comparable results
to alignment-based methods while being computationally faster
(Blaisdell, 1989).

Discrete Fourier Transform (DFT) is a powerful tool in signal
and image processing. During recent years, DFT has been increas-
ingly used in DNA research, such as gene prediction, protein
coding region, genomic signature, hierarchical clustering, periodi-
city analysis (Tiwari et al., 1997; Anastassiou, 2000; Kotlar and
Lavner, 2003; Vaidyanathan and Yoon, 2004; Afreixo et al., 2004,
2009; Tenreiro Machado et al., 2011). A DFT power spectrum of a
DNA sequence reflects the nucleotide distribution and periodic
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patterns of that sequence, and it has been applied to identify
protein coding regions in genomic sequences (Fukushima et al.,
2002; Yin and Yau, 2005, 2007). In this paper we provide a new
alignment-free method to classify DNA sequences based on the
DFT power spectrum. The method is tested and compared to other
state-of-the-art methods on various datasets for speed and
accuracy.

2. Materials and method

2.1. Mathematical background

In signal processing, sequences in time domain are commonly
transformed into frequency domain to make some important
features visible. Via that transformation, no information is lost
but some hidden properties could be revealed (Oppenheim et al.,
1989).

One of the most common transformations is Discrete Fourier
Transform (Oppenheim et al., 1989). For a signal of length
N; f ðnÞ;n¼ 0;…;N�1, the DFT of the signal at frequency k is

FðkÞ ¼
XN�1

n ¼ 0

f ðnÞe� ið2π=NÞkn

for k¼ 0;…;N�1. The DFT power spectrum of a signal at
frequency k is defined as

PSðkÞ ¼ jFðkÞj 2; k¼ 0;…;N�1

Notice that by definition, PSð0Þ ¼ j Fð0Þj 2 ¼ j PN�1
n ¼ 0 f ðnÞj 2.

The DFT is often used to find the frequency components of a
signal buried in a noisy time domain. For example, let y be a signal
containing a 60 Hz sinusoid of amplitude 0.8 and a 140 Hz
sinusoid of amplitude 1. This signal can be corrupted by a zero-
mean random noise:

y¼ 0:8n sin ð2nπn60ntÞþ sin ð2nπn140ntÞþrandom

The frequencies can hardly be identified by looking at the original
signal as in Fig. 1(a), but can be seen quite clearly when the signal
is transformed to frequency domain by taking the DFT (Fig. 1(b)).

2.2. Moment vectors

For a DNA sequence composed of nucleotides adenine (A),
cytosine (C), guanine (G), and thymine (T), one typical way to get
numerical representation is to use binary indicator sequences. The
values of these sequences are either 0 or 1 indicating the absence
or presence of a specific nucleotide. Specifically, for a given DNA
sequence of length N, we define uA of the same length as follows:

uAðnÞ ¼
1 if A is present at location n of the sequence
0 otherwise

�

uC ;uG;uT are defined similarly.
For example, for the sequence AGTCTTACGA, the corresponding

indicator sequence of nucleotide A is uA¼1000001001.
The DFT of uA is UA where

UAðkÞ ¼
XN�1

n ¼ 0

uAðnÞe� ið2π=NÞkn

for k¼ 0;…;N�1.
The DFT power spectrum of uA is PSA where PSAðkÞ ¼

jUAðkÞj 2; k¼ 0;…;N�1. The corresponding power spectrum for
nucleotides C;G; T is defined similarly. In general, for a gene
sequence of length N, let NA;NC ;NG;NT be the number of nucleo-
tide A;C;G; T in that sequence, respectively.

It is difficult to compare numerical sequences with different
lengths, so we cannot cluster genes and genomes based on their
power spectra sequences. One common approach to get over this
problem is to use mathematical moments, e.g. for nucleotide A
defines jth moment MA

j ¼ αA
j

PN�1
k ¼ 0 ðPSAðkÞÞj; j¼ 1;2… , where αj

A

be scaling factors. We want higher moments to converge to zero, i.
e. essential information is kept in the first few moments. Thus, the
chosen normalization factors αj

A must reflect the nature of the
sequences. Let us examine the binary indicator sequence of one
nucleotide, A, in more detail.

By Parseval's theorem (Oppenheim et al., 1989),

XN�1

n ¼ 0

juAðnÞj 2 ¼
1
N

XN�1

k ¼ 0

PSAðkÞ since PSAðkÞ ¼ jUAðkÞj 2
� �

The left side is actually NA, i.e. the number of 1 in the A binary
sequence. Hence,

PN�1
k ¼ 0 PSAðkÞ ¼NAN. So it is reasonable for αj

A to
be a power of NAN. As stated above, we want moments converge to
zero gradually so that information loss is minimal, thus αA

j ¼
1=ðNANÞj�1 is the best choice (which will be verified later).
Therefore

MA
j ¼

1

Nj�1
A Nj�1

XN�1

k ¼ 0

ðPSAðkÞÞj

With this normalization, MA
1 ¼

PN�1
k ¼ 0 PSAðkÞ ¼NAN. Our experimen-

tal results on various datasets proved that this is a good normal-
ization. However, by re-examining the formula, we find that a slight
modification can be made to get better outcomes. From Section 2.1,
we know PSAð0Þ ¼ jFAð0Þj 2 ¼ j PN�1

n ¼ 0 uAðnÞj 2 ¼ N2
A. Thus PSAð0Þ
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Fig. 1. Signal in time domain and frequency domain. (a) Signal Corrupted with
Zero�Mean Random Noise. and (b) Single�Sided Power Spectrum

Table 1
Running time comparison.

Datasets Our method MAFFT k-mer ClustalW

Mammals 4 s NA 18 min 15 s 3 h 15 min
Influenza A 0.6 s 22 s 12 s 1 min 55 s
HRV 5 s 17 min 40 s 47 min 28 s 8 h 10 min
Coronavirus 6 s NA 69 min 12 s 11 h 40 min
Bacteria 9 min 41 s NA NA NA
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