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a b s t r a c t

Recent work has highlighted the utility of nonparametric forecasting methods for predicting ecological
time series (Perretti et al., 2013 Q3. Proc. Natl. Acad. Sci. U.S.A. 110, 5253–5257). However, one topic that has
received considerably less attention is the quantification of uncertainty in nonparametric forecasts. This
important topic was brought to the forefront in the recent work by Jabot (2014. J. Theor. Biol.). Here, we
add to this emerging discussion by reviewing the available methods for quantifying forecast uncertainty
in nonparametric models. We conclude with a demonstration of one such method using the simulation
model of Jabot (2014. J. Theor. Biol.). We find that nonparametric forecast error is accurately estimated
with as few as 10 observations in the time series.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ecological prediction has been a topic of much recent interest
(e.g., Clark et al., 2001; Glaser et al., 2013; Lindegren et al., 2010).
The call for predictions is well founded, as there is a pressing need
for anticipating how ecosystems will be impacted by a rapidly
changing world. However, numerous methods exist for creating
predictions, and an important open question is the relative efficacy
of each method.

Methods for generating ecological predictions can be broadly
divided into two categories: parametric and nonparametric. In the
parametric approach, the modeler starts with a set (or sets) of
plausible mechanisms that generate the dynamics and converts
these into equations. Unknown parameters for these equations are
calibrated to available data using increasingly complex methods,
and predictions are made based on the calibrated model. Parametric
models are often used for estimating the underlying ‘true state’ of
the system, which is valid to the extent that the chosen model
matches reality. Using such ‘mechanistic’ models with biologically
interpretable parameters provides an intuitively obvious way of
evaluating various ‘what-if’ scenarios.

Nonparametric approaches skip the step of converting mechan-
isms into equations, instead attempting to infer the dynamics directly
from time series data. There are a wide variety of nonparametric
models available, and they generally operate by estimating the
relationships between variables using either a locally-weighted
smoothing algorithm (e.g., Härdle and Vieu, 1992; Sugihara, 1994)
or basis expansion (e.g., Ellner and Turchin, 1995; Hill et al., 1996).
They can be extended to non-stationary time series after pre-proc-
essing with a detrending procedure such as first-differencing and a
box–cox transformation (Box and Cox, 1964). Nonparametric models
produce forecasts that are robust to model misspecification at the
cost of reduced interpretability.

Jabot presents two arguments in favor of using parametric
models over nonparametric approaches. The first is that parametric
models permit ‘model checking’ and the second is that ‘no methods
are yet available to assess the reliability of nonparametric forecasts.’
As we have argued elsewhere (Munch et al., 2005; Perretti et al.,
2012; Thorson et al., 2013) we think that avoiding the need for
model checking is a feature, not a pitfall, of nonparametric met-
hods. Here we address Jabot’s second argument.

Forecast error is measured as the discrepancy between predictions
and observations. This differs from state-estimation error, in which
one is concerned with estimating the ‘true’ state of a system given a
set of observations. A ‘reliable’ forecast method is one that is able to
accurately estimate its out-of-sample forecast error, where out-of-
sample is defined as observations that are not used in the model-
fitting procedure (Tashman, 2000). Fortunately, there are, in fact, a
number of procedures available for estimating expected forecast error
that are equally applicable to parametric and nonparametric models.
The methods utilize partitioning and resampling procedures to
estimate error, and unlike the parametric method proposed in Jabot
(2014), they do not require the modeler to sift through a collection of
mechanistic models in search of the best-fitting model.

Here, we provide a brief overview of some commonly used
methods for estimating forecast error. Then, using the theta-
logistic simulation model described in Jabot, we demonstrate the
ability of one such method to accurately estimate expected
forecast error from nonparametric forecasts.

2. A review of some nonparametric methods for estimating
expected forecast error

The typical procedure for estimating forecast error is to divide
the available data into a training set and a test set. The model is fit
using the training set, and forecast error is evaluated on the test set.
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The training set may be further divided into a learning set and
validation set if a model selection step is required.

The simplest method of estimating forecast uncertainty is the
split-sample method in which the available data is split into a single
training set and test set. The prediction model is built using the
training set, and expected forecast error is evaluated by predicting
the test set (e.g., Ward et al., 2014). This method is computationally
efficient, however, it may overestimate expected forecast error due
to its incomplete usage of the available data (Molinaro et al., 2005).

Similar to the split-sample method, k-fold cross-validation divides
the data into a training set and test set. However, instead of splitting
the data once, it is partitioned into k equal sections, and each section
is treated as a test set, with the remaining sections treated as the
training set. In this procedure all portions of the training set are used
to estimate forecast error which helps reduce the overestimation of
expected error associated with the split-sample procedure. Leave-
one-out cross-validation is obtained by setting k equal to the number
of observations in the dataset, and is asymptotically equivalent to the
Akaike Information Criterion for cross-sectional data (Stone, 1977).
Similarly, leave-k-out is asymptotically equivalent to the Bayesian
Information Criterion for linear models, where k¼n[1�1/(log(n)�
1)] and n is the number of observations (Shao, 1997). Simulation
studies suggest that the optimal number of partitions for model
selection is typically between five and ten (Kohavi, 1995).

Another variation on the k-fold scheme is Monte Carlo cross-
validation. In this approach, the k-fold process is applied by randomly
assigning points to each of the partitions and repeating this process
many times. This has the advantage of generating a large number of
simulated test sets, although the computational burden can become
exceedingly large.

Finally, a bootstrap resampling method can be utilized to estimate
expected forecast error. In one such scheme, known as the 0.632
bootstrap, the observations are sampled from the original data with
replacement to form a bootstrapped training set. The model is then
fit to the bootstrapped training set, and expected forecast error is
evaluated using a test set containing only data that was not included
in the bootstrapped training set. This method is implemented in
commonly used R packages such as randomForests and e1071.

Although this bootstrap procedure has been shown to perform well
for model selection, it will typically overestimate forecast error, as the
proportion of unique observations in the bootstrapped training set
will only be �0.632. Therefore the expected error is obtained by
multiplying the test error by 0.632 and adding 0.368 of the training
error (Efron and Gong, 1983; also see (Efron and Tibshirani, 1997).

3. A demonstration

Here, we use kernel regression and S-map methods to predict time
series generated by the theta-logistic model used in Jabot (2014).
Specifically, for the kernel regression we use a Gaussian kernel with a
local-constant regression estimator (Nadaraya, 1964), with the
bandwidth automatically selected using least-squares cross-validation
(Racine and Li, 2004). For the S-map (Sugihara, 1994) we employ the
same model structure as Jabot (2014), and fit it using leave-one-out
cross-validation. We estimate expected forecast error using the sim-
plest of the methods above in which the time series is divided evenly
into a training set and a test set. Forecast error is quantified by root
mean squared error (RMSE) rather than standardized RMSE (SRMSE) as
was used in Jabot (2014), as SRMSE confounds the uncertainty in
forecast error with the uncertainty in the variance of the observations.

Simulated time series were generated following the setup of Jabot
(2014) using the theta-logistic model with parameters θ¼1, r¼3.7,
and σobs¼0.1 (i.e., the logistic model with “medium” noise from Jabot
(2014)). Kernel regression forecasts were generated using the np
package (Hayfield and Racine, 2008) in R (see Appendix for code).
To explore the relationship between the length of the time series and
the accuracy of the expected prediction error, time series length varied
from 10 to 100 observations by increments of 10. The expected
prediction error was then compared to the true out-of-sample pre-
diction error for a time series of length equal to the test set. For each
time series length, 1000 replicates were performed to calculate the
median, 10th, and 90th percentiles of the expected prediction error
and out-of-sample prediction error.

In contrast to the discussion of Jabot (2014), we find that the
uncertainty in the nonparametric prediction error is well estimated

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Fig. 1. Estimated nonparametric forecast error vs. out-of-sample forecast error. The median estimated forecast error closely matches the median out-of-sample forecast error
for both the kernel regression and the S-map methods (a and c). The median, 10th and 90th percentiles are also accurately estimated by each method, and they become
increasingly accurate with additional data (b and d).
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