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H I G H L I G H T S

� Driving the model jellyfish bell at or slightly below the resonant frequency led to a high amplitude of bell oscillation.
� The model jellyfish bell swam fastest at periodic steady state when driven at frequencies at or slightly above the resonant frequency.
� The optimal driving frequency for forward swimming was dependent upon the magnitude of the driving force.
� The advantage of driving the bell at its resonant frequency was reduced when additional fluid damping is introduced.
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a b s t r a c t

A current question in swimming and flight is whether or not driving flexible appendages at their
resonant frequency results in faster or more efficient locomotion. It has been suggested that jellyfish
swim faster when the bell is driven at its resonant frequency. The goal of this study was to determine
whether or not driving a jellyfish bell at its resonant frequency results in a significant increase in
swimming velocity. To address this question, the immersed boundary method was used to solve the fully
coupled fluid structure interaction problem of a flexible bell in a viscous fluid. Free vibration numerical
experiments were used to determine the resonant frequency of the jellyfish bell. The jellyfish bells were
then driven at frequencies ranging from above and below the resonant frequency. We found that jellyfish
do swim fastest for a given amount of applied force when the bells are driven near their resonant
frequency. Nonlinear effects were observed for larger deformations, shifting the optimal frequency to
higher than the resonant frequency. We also found that the benefit of resonant forcing decreases for
lower Reynolds numbers.

Published by Elsevier Ltd.

1. Introduction

It has been suggested that locomotory efficiency and performance
with flexible appendages is maximized when these structures are
driven at their natural frequency (Alexander and Bennet-Clark, 1977;
Ahlborn et al., 2006). This argument is based upon the idea that if the
animal's movements are tuned to the natural frequency of vibration of
the propulsive structures, the potential energy stored by elastic
deformation is maximized. Resonant driving has been examined for
a range of different propulsive structures such as fish fins (Tytell et al.,
2014), insect wings (Masoud and Alexeev, 2010), and jellyfish bells
(DeMont and Gosline, 1988a). It is important to note that not every

study has leant support to the idea that propulsive efficiency is
maximized when the resonant and driving frequencies coincide.
Ramananarivo et al. (2011) used a self-propelled simplified insect
model to show that flight performance may be maximized by tuning
the temporal evolution of the wing shape to minimize drag rather
than flapping the wings at their natural frequency. Tytell et al.
(2014) also noted that while fish with carangiform and thunniform
swimming modes gain a propulsive benefit due to resonant effects,
resonance is not critical for efficient swimming of anguilliform
swimmers due the larger role that fluid dynamic damping plays in
its movement. These studies and others have explored the nonli-
near effects of the surrounding fluid environment, such as drag and
added mass of the fluid with the elastic properties of the propulsive
structures. In this study, immersed boundary simulations of the fluid
structure interaction problem of an elastic jellyfish bell driven at its
natural frequency are used to examine swimming performance.
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Mechanical systems that bend or flex have a natural frequency
of vibration, defined as the frequency at which the system
oscillates when no external forces are applied. This natural
frequency is determined by the effective mass of the system and
its elastic properties that store potential elastic energy (Ahlborn
et al., 2006). Resonance occurs when the mechanical system
responds with greater amplitude when driven at its natural
frequency of vibration, also known as the resonant frequency, as
opposed to frequencies above and below it. When looking at
propulsion studies in fluids, it is often useful to examine resonance
by reducing the coupled fluid–structure system to a spring–mass
model where the parameters incorporate the effective mass of the
structure and the fluid as well as the effective stiffness (Tytell
et al., 2014; DeMont and Gosline, 1988a; Ramananarivo et al.,
2011; Megill, 2002). One can then compare analytic solutions to
experimental observations to test the accuracy and predictive
ability of the model.

Jellyfish propulsion can be thought of as a complementary two
phase process of active contraction and passive expansion of the
bell. During a jellyfish swimming cycle, the coronally oriented
subumbrellar swimming muscles contract and deform the jellyfish
bell, expelling fluid. The mesoglea, an extracellular matrix com-
posed fibers of a collagen-like protein, stores the potential elastic
energy that drives the re-expansion of the bell when the muscles
relax (Arai, 1996). The fluid mechanical mechanisms of jellyfish
swimming depend upon the shape of the bell. Oblate jellyfish use
a rowing or paddling motion (Dabiri et al., 2005) and prolate
jellyfish use jet propulsion (Dabiri et al., 2006). If the jellyfish
subumbrellar muscles were to have the same frequency of activa-
tion as the natural frequency of the bell, then it is thought that the
swimming speed would be maximized for a fixed force amplitude
(DeMont and Gosline, 1988a). Resonant driving would maximize
the potential elastic energy stored in the mesoglea that is then
used to fill the bell. This is due to the fact that the amplitude of bell
deformation is maximized when it is driven near its resonant
frequency (see, for example, Ogata, 2005).

The effect of resonant driving of jellyfish bells has been pre-
viously examined using reduced models and experiments (Ahlborn
et al., 2006; DeMont and Gosline, 1988a,b; Megill, 2002; Megill et
al., 2005). DeMont and Gosline modeled the dynamics of the
jellyfish bell as a linear damped harmonic oscillator with lumped
parameters (DeMont and Gosline, 1988a). A linear damping para-
meter was used to account for both the internal damping of the
viscoelastic mesoglea and the external damping due to shearing of
the surrounding fluid. When a sinusoidal force was applied to this
model, the result showed that there is a 40% increase in the
amplitude of circumferential oscillation at the resonant frequency
relative to significantly higher and lower frequencies. The resulting
resonant frequency was also close to the observed frequency of
pumping during swimming. Megill extended this work by modeling
the elasticity of the bell with a nonlinear spring to more accurately
describe the large strain ranges observed in jellyfish (Megill, 2002).

The fluid flow around swimming jellyfish has also been studied
using computational fluid dynamics (Huang and Sung, 2009; Zhao
et al., 2008). Herschlag and Miller prescribed the kinematics of a
2D hemielliptical bell. The resulting forward motion of the jellyfish
was similar to speeds measured in actual jellyfish (Herschlag and
Miller, 2011). Mohseni et al. used an axisymmetric Lagrangian–
Eulerian formulation of the fluid–structure interaction (FSI) pro-
blem to simulate the forward swimming of the jellyfish Aequorea
victoria using the actual bell profiles as inputs (Sahin et al., 2009).
Alben et al. used a combination of computational tools and
analytical models to explore the kinematics of the bell for both
high swimming and high efficiency movements (Alben et al.,
2013). None of these studies, however, considered the effect of
driving the bell at the resonant frequency.

This paper extends the idea of resonant driving of the jellyfish
bell to an FSI framework using the immersed boundary method.
Instead of prescribing the motion of the bell, a periodic force
applied towards the centerline in a band spanning the lower
quarter of the bell was used to drive the bell contractions. The
results are used to determine the benefits of driving the bell at its
resonant frequency in terms of forward swimming velocity and
the amplitude of bell oscillation. The effects of changing the
forcing magnitude and Reynolds number on the optimal driving
frequency are also considered. Due to the computational costs
of the FSI problem and the wide parameter space, this study will
be restricted to consider only simplified prolate bells in two
dimensions.

2. Methods

2.1. Jellyfish geometry

The jellyfish was modeled in two dimensions (not axisym-
metric) as a hemielliptical bell with a specified cut-off for the
lower portion of the bell. The idea of modeling the bell as a
hemiellipsoid has been used in a variety of analytical and numer-
ical studies (Colin and Costello, 2002; Daniel, 1985; McHenry and
Jed, 2003; Herschlag and Miller, 2011). The bell is designed to
resist bending and stretching, and the preferred configuration is
initialized as a hemiellipse. The governing equation for the bell
geometry is given by

ðx�xcÞ2
a2

þðy�ycÞ2
b2

¼ 1 for yZyc�d; ð1Þ

where ðxc; ycÞ is the center of the ellipse, a is the length of the half
width of the bell, and bþd is the height of the bell.

To drive the motion of the bell, an external forcing term, (FD),
was applied to a portion of the bell. This forcing term is described
by a simple sinusoidal function

FDðtÞ ¼ FMag sin ð2πftÞ; ð2Þ
where FMag is the amplitude of the forcing term, f is the driving
frequency, and t is the time. During the contraction phase ðFD40Þ,
the forcing term pushes the bell towards the centerline. In the
expansion phase ðFDo0Þ the same process occurs except now the
force is directed away from the centerline.

The choice of this forcing term is analogous to the forcing term
present in DeMont and Gosline's model, which was in turn taken
from observations of continuous trains of muscular contractions. It
is important to note that the bell in this experiment does not have
a fixed kinematic cycle but is instead subject to deformations
caused by the forcing term and resulting fluid forces. Variations in
the kinematics of the jellyfish bell during the contraction and
expansion phase will be dependent upon the driving frequency, f,
and magnitude, FMag, of the forcing term.

2.2. The immersed boundary method

To solve the fully coupled fluid–structure interaction problem, a
2D formulation of the immersed boundary (IB) method was used.
The IB method was originally developed by Peskin to study the
fluid dynamics of blood flow in the human heart (Peskin, 2002).
Since then, the IB method has been used to numerically solve a
variety of fluid structure interaction problems that inhabit the
low to intermediate Reynolds number regime here defined as 10�1

to 103 (Mittal and Iaccarino, 2005), including undulatory swim-
ming (Fauci and Peskin, 1988; Fauci and Fogelson, 1993; Bhalla
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