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H I G H L I G H T S

� When are phylogenetic tree branch lengths determined by tree split probabilities?
� We prove that this holds for any tree when the branch lengths are sufficiently small.
� We prove that it also holds for trees with up to four leaves, without further assumptions.
� Our results extend to certain models with more than 2 states.
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a b s t r a c t

The evolution of aligned DNA sequence sites is generally modeled by a Markov process operating along
the edges of a phylogenetic tree. It is well known that the probability distribution on the site patterns at
the tips of the tree determines the tree topology, and its branch lengths. However, the number of
patterns is typically much larger than the number of edges, suggesting considerable redundancy in the
branch length estimation. In this paper we ask whether the probabilities of just the ‘edge-specific’
patterns (the ones that correspond to a change of state on a single edge) suffice to recover the branch
lengths of the tree, under a symmetric 2-state Markov process. We first show that this holds provided
the branch lengths are sufficiently short, by applying the inverse function theorem. We then consider
whether this restriction to short branch lengths is necessary. We show that for trees with up to four
leaves it can be lifted. This leaves open the interesting question of whether this holds in general. Our
results also extend to certain Markov processes on more than 2-states, such as the Jukes–Cantor model.

& 2015 Elsevier Ltd. All rights reserved.

1. Background

When a discrete character evolves on a tree under a Markov
process, the probability distribution on site patterns at the leaves
of the tree is determined by the tree and its branch lengths
(Felsenstein, 2004; Semple and Steel, 2003). What is less obvious
is that this process is invertible for many models – that is, the
probability distribution on site patterns at the leaves uniquely
identifies both the tree and its branch lengths.

This fundamental property underlies all statistical approaches
for inferring evolutionary relationships from aligned genetic
sequence data. In this setting, the ‘discrete character’ refers to
the pattern of nucleotides across the species at each site, and the
frequency of this pattern across the sequences provides some
estimate of the probability of that pattern. In this paper we are
interested in what the probability distribution says about the

branch lengths of the underlying tree (we will assume this
topology is known). Notice that the number of site patterns grows
exponentially with the number n of leaves, yet the number of
branches of the tree (for which the branch lengths are being
estimated) grows linearly with n. For example, in the case of a
symmetric 2-state model, there are effectively 2n�1 site patterns,
while the number of edges is between n (for the star tree) to 2n�3
(for a completely resolved binary tree).

This suggests a basic question – do we need all the site pattern
probabilities to infer the branch lengths? More precisely, if a tree has k
edges (branches), are there k site patterns whose probabilities under
the model might identify the lengths of these branches?

One motivation for this question is that in practice, many site
patterns will simply never occur (indeedmost will not, if our sequence
length grows at most polynomially with n, since the number of site
patterns grows exponentially with n). This is a problem if we try to
estimate pattern probabilities from their relative frequency.

There is an natural candidate for a particular choice of k site
patterns – for each edge we take the site pattern in which all the
leaves on one side of the edge are in one state, and all the leaves
on the other side of the edge are in a different state – we refer to
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such a site pattern as a tree split for this edge. From a practical
perspective, the tree splits are patterns that are likely to be
observed in the data, since they require just one change of state
in the tree. They also correspond to the primary divisions of the
species into two groups (e.g. vertebrates vs. invertebrates) and so
have a clear phylogenetic meaning.

The question of whether the tree split probabilities determine
the branch lengths is a delicate one – we prove that for the 2-state
symmetric model, the answer is yes for 4-leaf resolved (binary)
trees and for 4-leaf star trees, and we conjecture that it holds true
for arbitrary phylogenetic trees. This conjecture is supported by
our proof that the branch lengths are determined by the tree split
probabilities for any tree (on any number of leaves) when these
branch lengths are close to zero.

Our approach exploits the Hadamard representation for the 2-
state model (Hendy and Penny, 1989, 1993), as well as computa-
tional (symbolic) algebraic analysis tools. In the concluding com-
ments we point out how our results also extend to certain 4-state
model, including the Jukes–Cantor and Kimura 2ST models, or
more generally to certain models with an even number of states.
Our results also complement other recent algebraic analysis of
models on trees with a small number of leaves, including Klaere
and Liebscher (2012) and Sumner and Jarvis (2009).

2. Model and notations

In the Neyman 2-state model (Neyman, 1971), each character
admits one out of two states, for example, purines and pyrimi-
dines. Without loss of generality, we denote these states by 0 and
1. We use the symmetric Poisson model, where for each edge e of
the tree T, there is a corresponding probability pe ð0rpeo1=2Þ
that the character states at the two incident vertices of e differ, and
this probability is independent of the state at the initial vertex. For
a 2-state character, this probability pe that the endpoints of e at a
site are in different states is the same as the probability of having
an odd number of substitutions per site across the edge e. The
expected number of substitutions per site across the edge e equals
qe ¼ �1

2lnð1�2peÞ. The value qe is referred to the (branch) length of
edge e. Measuring the tree edges by qe ð0rqeo1Þ, we get an
additive measure on the tree, namely the expected number of
substitutions between each pair of leaves (because expected
values are additive). Such a phylogenetic tree with branch lengths
is a probabilistic model that emits any given pattern of states at its
leaves with a well defined probability. Notice that the limits qe-0
and qe-1 correspond to the limits pe-0 and pe-

1
2, respectively.

The observed sequences at the leaves can be represented by a
matrix, ψ, where the number of rows equals the number of species
(n¼4 in our case), and the number of columns equals the common
length of the sequences. In biological terms, this matrix is just a
data alignment – that is, each column consists of an aligned site of
(binary) character states across the n species. For 2-state char-
acters, it is convenient to ‘summarize’ the observed data ψ by a
vector of observed frequencies of splits, ŝ. This vector simply
counts how many sites share any specific pattern. Under a fully
symmetric 2-state model, the probability of a pattern is equal to
that of its complement (where all 0 and 1 are interchanged). We
make the following convention about indexing the patterns
obtained in the sequences over n¼4 species, labeled 1, 2, 3, and
4, with the sequences x1; x2; x3; x4Af0;1gn: We identify a site
pattern by the subset of species 1, 2, 3 whose character at that
site is different from that of species 4. More generally (i.e. for any
value of n) for every αDf1;…;n�1g, an α-split pattern is a pattern
where all taxa in the subset α have one character (0 or 1), and the
taxa in the complement subset have the second character (there
are two such patterns). The value ŝα equals the number of times

that α-split patterns appear in the data. For n¼4 there are 23 ¼ 8
possible patterns, and the vector of observed sequence frequencies
is ŝ ¼ ½ŝ∅; ŝ1; ŝ2; ŝ12; ŝ3; ŝ13; ŝ23; ŝ123�.

3. The tree split probabilities determine the branch lengths
locally

In this section, we show that the (multivariate) inverse function
theorem implies that branch lengths can be recovered from tree split
probabilities provided the branch lengths are not too large. Recall that
the inverse function theorem provides a sufficient condition for a
function f from an N-dimensional space A to another N-dimensional
space B to be invertible in the neighborhood of some point aAA. This
condition is that the function f be continuously differentiable in a
neighborhood of a, and its Jacobianmatrix (of first derivatives) be non-
singular at a. In this paper, a phylogenetic tree refers to an unrooted
tree with labeled leaves, and with every internal vertex having degree
strictly greater than 2 (Semple and Steel, 2003).

Theorem 3.1. Let T be any phylogenetic tree, on any number of
leaves. Under the 2-state symmetric model, the probabilities of the
tree splits determine the branch lengths of T in some neighborhood of
the origin. That is, provided all the branch lengths are sufficiently
small then they can be uniquely recovered from the tree split
probabilities they induce.

Proof. To simplify notation in this section, given a phylogenetic
tree T with k edges, label the edges e1; e2;…; ek. For each
iAf1;…; kg, let αi denote the tree split corresponding to ei; let si
be the probability of generating the pattern αi on T under the
symmetric 2-state model; let qi be the branch length of edge ei,
and let pi ¼ 1

2ð1�e�2qi Þ, which is the probability of a change of
state on edge ei ¼ ðvi1; vi2Þ. Consider the two subtrees of T which
result from removing the edge ei (but not the nodes vi1; v

i
2). Let

T1; T2 denote the resulting subtrees, rooted at vi1; v
i
2, respectively.

Let Qi
1 be the probability of the event ‘all leaves of T1 are in the

same state as v1i ’, and Qi
2 be the probability of the event ‘all leaves

of T2 are in the same state as v2
i ’. Let Ri1 denote the probability of

the event ‘all leaves of T1 are in the same state and they differ from
the state of v1

i ’, and Ri
2 denote the probability of the event ‘all

leaves of T2 are in the same state and they differ from the state of
v2
i ’. We note that under the 2-state symmetric model, changes of

state on different edges are independent events. By considering
whether or not there is a change of state on edge ei, the following
identity holds for all i:

si ¼ piQ
1
i Q

2
i þð1�piÞðQ1

i R
2
i þR1

i Q
2
i Þ: ð1Þ

Note that Q1
i ;Q

2
i ;R

1
i ;R

2
i involves only the terms pj for ja i, and

that when all the pj terms are zero we have

R1
i j p ¼ 0 ¼ R2

i j p ¼ 0 ¼ 0 and Q1
i j p ¼ 0 ¼ Q2

i j p ¼ 0 ¼ 1: ð2Þ

Now, consider the Jacobian matrix of partial derivatives

J¼ ∂si
∂pj

" #
:

From Eq. (1) and the fact that pi does not appear in Q1
i ;Q

2
i and

R1
i ;R

2
i we have

∂si
∂pi

¼ Q1
i Q

2
i �ðQ1

i R
2
i þR1

i Q
2
i Þ

and from Eq. (2) this equals 1 when p¼ 0.
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