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H I G H L I G H T S

� We explore the evolution of direct reciprocity in groups of n players.
� We show why it is instructive to consider zero-determinant (ZD) strategies.
� ZD strategies include AllD, AllC, Tit-for-Tat, extortionate and generous strategies.
� In small groups, generosity allows the evolution of cooperation.
� In large groups, cooperation is unlikely to evolve.
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a b s t r a c t

Repetition is one of the key mechanisms to maintain cooperation. In long-term relationships, in which
individuals can react to their peers' past actions, evolution can promote cooperative strategies that
would not be stable in one-shot encounters. The iterated prisoner's dilemma illustrates the power of
repetition. Many of the key strategies for this game, such as ALLD, ALLC, Tit-for-Tat, or generous Tit-for-
Tat, share a common property: players using these strategies enforce a linear relationship between their
own payoff and their co-player's payoff. Such strategies have been termed zero-determinant (ZD).
Recently, it was shown that ZD strategies also exist for multiplayer social dilemmas, and here we explore
their evolutionary performance. For small group sizes, ZD strategies play a similar role as for the
repeated prisoner's dilemma: extortionate ZD strategies are critical for the emergence of cooperation,
whereas generous ZD strategies are important to maintain cooperation. In large groups, however,
generous strategies tend to become unstable and selfish behaviors gain the upper hand. Our results
suggest that repeated interactions alone are not sufficient to maintain large-scale cooperation. Instead,
large groups require further mechanisms to sustain cooperation, such as the formation of alliances or
institutions, or additional pairwise interactions between group members.

& 2015 Published by Elsevier Ltd.

1. Introduction

One of the major questions in evolutionary biology is why
individuals cooperate with each other. Why are some individuals
willing to pay a cost (thereby decreasing their own fitness) in
order to help someone else? During the last decades, researchers
have proposed several mechanisms that are able to explain why
cooperation is abundant in nature (Nowak, 2006; Sigmund, 2010).
One such mechanism is repetition: if I help you today, you may

help me tomorrow (Trivers, 1971). Among humans, this logic of
reciprocal giving has been documented in numerous behavioral
experiments (e.g., Wedekind and Milinski, 1996; Keser and van
Winden, 2000; Fischbacher et al., 2001; Dreber et al., 2008; Grujic
et al., 2015). Moreover, it has also been suggested that direct
reciprocity is at work in several other species, including vampire
bats (Wilkinson, 1984), sticklebacks (Milinski, 1987), blue jays
(Stephens et al., 2002), and zebra finches (St. Pierre et al., 2009).
From a theoretical viewpoint, these observations lead to the
question under which circumstances direct reciprocity evolves,
and which strategies can be used to sustain mutual cooperation.

The main model to explore these questions is the iterated
prisoner's dilemma, a stylized game in which two individuals
repeatedly decide whether they cooperate or defect (Rapoport and
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Chammah, 1965; Doebeli and Hauert, 2005). The payoffs of the
game are chosen such that mutual cooperation is preferred over
mutual defection, but each individual is tempted to defect at the
expense of the co-player. Theoretical studies have highlighted
several successful strategies for this game (Axelrod and Hamilton,
1981; Molander, 1985; Kraines and Kraines, 1989; Nowak and
Sigmund, 1992, 1993b). Evolution often occurs in dynamical cycles
(Boyd and Lorberbaum, 1987; Nowak and Sigmund, 1993a; van
Veelen et al., 2012): unconditional defectors (ALLD) can be invaded
by reciprocal strategies like Tit-for-Tat (TFT), which in turn often
catalyze the evolution of more cooperative strategies like generous
Tit-for-Tat (gTFT) and unconditional cooperators (ALLC). Once ALLC
is common, ALLD can reinvade, thereby closing the evolutionary
cycle (Nowak and Sigmund, 1989; Imhof et al., 2005; Imhof and
Nowak, 2010).

The above mentioned strategies for the iterated prisoner's dilemma
share an interesting mathematical property: they enforce a linear
relationship between the players' payoffs in an infinitely repeated
game (Press and Dyson, 2012). For example, when player 1 adopts the
strategy Tit-for-Tat, the players' payoffs πj will satisfy the equation
π1�π2 ¼ 0, irrespective of player 2's strategy. Similarly, when player
1 adopts ALLD, payoffs will satisfy cπ1þbπ2 ¼ 0 (where c and b
denote the cost and the benefit of cooperation,respectively; this
version of the prisoner's dilemma is sometimes called the donation
game,see e.g. Sigmund, 2010). Finally, when player 1 applies gTFT, the
enforced payoff relation becomes π2 ¼ b. Strategies that enforce such
linear relationships between payoffs have been called zero-
determinant strategies, or ZD strategies (this name is motivated by
the fact that these strategies let certain determinants vanish, see Press
and Dyson, 2012). After Press and Dyson's discovery, several studies
have explored how ZD strategies for the repeated prisoner's dilemma
fare in an evolutionary context (Akin, 2013; Stewart and Plotkin, 2012,
2013; Hilbe et al., 2013a,b; Adami and Hintze, 2013; Szolnoki and Perc,
2014a,b; Chen and Zinger, 2014), and in behavioral experiments (Hilbe
et al., 2014a).

Zero-determinant strategies are not confined to pairwise
games; they also exist in the iterated public goods game (Pan
et al., 2014), and in fact in any repeated social dilemma, with an
arbitrary number of involved players (Hilbe et al., 2014b). In this
way, it has become possible to identify the multiplayer-game
analogues of the above mentioned strategies. For example, the
multiplayer-version of TFT in a repeated public goods game is
proportional Tit-for-Tat (pTFT): if j of the other group members
cooperated in the previous round, then a pTFT-player cooperates
with probability j=ðn�1Þ in the next round, with n being the size of
the group. Herein, we will explore the role of these recently
discovered multiplayer ZD strategies for the evolution of
cooperation.

We consider two evolutionary scenarios. First, we consider a
conventional setup, in which the members of a well-mixed
population are engaged in a series of repeated public goods games,
and where successful strategies reproduce more often. In line with
previous studies (Boyd and Richerson, 1988; Hauert and Schuster,
1997; Grujic et al., 2012), our simulations confirm that the
prospects of cooperation depend on the size of the group. Small
groups promote generous ZD strategies that allow for high levels
of cooperation, whereas larger groups favor the emergence of
selfish ZD strategies such as ALLD. For our second evolutionary
scenario, we consider a player with a fixed ZD strategy whose co-
players are allowed to adapt their strategies over time. Similar to
the case of the repeated prisoner's dilemma (Press and Dyson,
2012; Chen and Zinger, 2014), the resulting group dynamics then
depends on the applied ZD strategy of the focal player. But also
here, the possibilities of a single player to generate a positive
group dynamics diminishes with group size, irrespective of the
strategy applied by the focal player.

Taken together, these results suggest that larger groups make it
more difficult to sustain cooperation. In the discussion, we will
thus argue that there are three potential mechanisms that can
help individuals solving their multiplayer social dilemmas: they
can either provide additional incentives on a pairwise basis (Rand
et al., 2009; Rockenbach and Milinski, 2006); they can coordinate
their actions and form alliances (Hilbe et al., 2014b); or they can
implement central institutions which enforce mutual cooperation
(Ostrom, 1990; Sigmund et al., 2010; Sasaki et al., 2012; Cressman
et al., 2012; Traulsen et al., 2012; Zhang and Li, 2013;
Schoenmakers et al., 2014).

2. Model

2.1. Iterated multiplayer dilemmas and memory-one strategies

In the following, we consider a group of n individuals, which is
engaged in a repeated multiplayer dilemma. In each round of the
game, players can decide whether to cooperate (C) or to defect (D).
The payoffs in a given round depend on the player's own decision,
and on the number of cooperators among the remaining group
members. That is, in a round in which j of the other n�1 group
members cooperate, the focal player receives aj for cooperation,
and bj for defection (see also Table 1). We suppose that the
multiplayer game takes the form of a social dilemma, such that
payoffs satisfy the following three conditions (see also Kerr et al.,
2004): (a) individuals prefer their co-players to be cooperative,
ajþ1Zaj and bjþ1Zbj for all j; (b) within a mixed group, defectors
outperform cooperators, bjþ14aj for all j; (c) mutual cooperation
is favored over mutual defection, an�14b0. Several well-known
examples of multiplayer games satisfy these criteria, including the
public goods game (see e.g. Ledyard, 1995), the volunteer's
dilemma (Diekmann, 1985; Archetti, 2009), or the collective-risk
dilemma (Milinski et al., 2008; Santos and Pacheco, 2011; Abou
Chakra and Traulsen, 2014).

We assume that the multiplayer game is repeated, such that
the group members face the same dilemma situation over multiple
rounds. Herein, we will focus on infinitely repeated games, but the
theory of ZD strategies can also be developed for games with
finitely many rounds, or when future payoffs are discounted (Hilbe
et al., 2014a, 2015). In repeated games, players can react on their
co-players' previous behavior. In the simplest case, players only
consider the outcome of the last round, that is, they apply a so-
called memory-one strategy. Memory-one strategies consist of
two parts: a rule that tells the player what to do in the first round,
and a rule for what to do in all subsequent rounds, depending on
the previous round's outcome. In infinitely repeated games, the
first-round play can typically be neglected (see also Appendix A.1).
In that case, memory-one strategies can be written as a vector
p¼ pC;n�1;…; pC;0; pD;n�1;…; pD;0

� �
. The entries pS;j correspond to
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Table 1
Payoff table for multiplayer games with n group members (see also Gokhale and
Traulsen, 2010; van Veelen and Nowak, 2012; Gokhale and Traulsen, 2014; Peña et
al., 2014; Du et al., 2014). The payoff of a player depends on the player's own action,
and on the number of cooperating co-players. As an example of a multiplayer
dilemma, we will discuss linear public good games. There, cooperators contribute
an amount c40 to a common pool. Total contributions to the common pool are
multiplied by a factor r with 1oron, and evenly shared among all group
members. Thus, the payoff of a cooperator is aj ¼ rcðjþ1Þ=n�c, whereas the payoff
of a defector is bj ¼ rcj=n.

Number of cooperating co-players n�1 n�2 … 0
Payoff for cooperation an�1 an�2 … a0
Payoff for defection bn�1 bn�2 … b0
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