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a b s t r a c t

Genome composition analysis of di-, tri- and tetra-nucleotide frequencies is known to be evolutionarily
informative, and useful in metagenomic studies, where binning of raw sequence data is often an
important first step. Patterns appearing in genome composition analysis may be due to evolutionary
processes or purely mathematical relations. For example, the total number of dinucleotides in a sequence
is equal to the sum of the individual totals of the sixteen types of dinucleotide, and this is entirely
independent of any assumptions made regarding mutation or selection, or indeed any physical or
chemical process. Before any statistical analysis can be attempted, a knowledge of all necessary
mathematical relations is required. I show that 25% of di-, tri- and tetra-nucleotide frequencies can be
written as simple sums and differences of the remainder. The vast majority of organisms have circular
genomes, for which these relations are exact and necessary. In the case of linear molecules, the absolute
error is very nearly zero, and does not grow with contiguous sequence length. As a result of the new,
necessary relations presented here, the foundations of the statistical analysis of di-, tri- and tetra-
nucleotide frequencies, and k-mer analysis in general, need to be revisited.

& 2015 Elsevier Ltd. All rights reserved.

Theoretical work aimed at deciphering features of molecular
evolution and the processes bearing on these features can only be
effective if the most fundamental properties of sequences are
clearly understood. In particular, patterns or regularities of a
purely mathematical nature need to be separated from evolution-
ary signal. In the following, I describe such a type of mathematical
pattern or regularity. I present it in its simplest form, since that is
most likely to contribute to actual understanding.

The analysis of nucleic acid sequences is a fundamental
component of modern genomic and evolutionary analysis. The
base composition of DNA has been studied since the earliest days
of molecular biology (Freese, 1962), beginning with the empirical
observations of Chargaff and the rules he derived from them
(Chargaff and Davidson, 1955). As a step towards understanding
the genetic code, combinatorics was successfully used (Brenner,
1957) to exclude the possibility of overlapping triplet codes
(Gamow, 1954), and the results presented here continue that line
of thought which associates pure mathematical proof with mole-
cular reality. Dinucleotide frequencies are the frequencies of
neighbouring pairs of nucleotides in the order they appear in a
given sequence. For standard nucleic acid sequences, there are
sixteen such pairs, and their relative abundances have long been
known to be biologically and evolutionarily informative (Freese,
1962; Karlin and Burge, 1995). Here we show that four (25%) of
these can be expressed as simple sums and differences of the
remaining twelve, for purely combinatorial reasons. This is the
first time that this level of dependency has been recognised. The
new relations are mathematically exact for any circular molecule,
including plasmids and the genomes of many viruses and the vast
majority of cellular organisms, irrespective of assumed mutation
rates or models, with or without selection. For linear molecules,

the worst case error does not increase with contiguous sequence
length. The same type of dependency exists between words of
more than two nucleic acids, and the relations apply to metage-
nomic analysis. Since statistical analysis of any kind relies upon an
understanding of what is independent and what is not (Walker,
1940), the assumptions made in statistical analyses of nucleic acid
composition need to be revisited.

Early studies of base composition tended to focus on the frequen-
cies of base pairs (Freese, 1962; Karlin and Burge, 1995), but it has also
become common, particularly in the context of metagenomics, to
count triplets, quadruplets (tetranucleotides) (Pride et al., 2003;
Teeling et al., 2004b) or longer words (k-mers) (Alneberg et al.,
2014; Chor et al., 2009; Ragan and Chan, 2013), and these are applied
in a wide variety of contexts (Hohl and Ragan, 2007; Karlin and
Ladunga, 1994; Mrazek, 2009; Sims et al., 2009). Dinucleotide
frequencies have continued to receive attention (Baran and Ko,
2008; Liu and Li, 2008; Palmeira et al., 2006; Simmonds et al.,
2013), as exemplified by studies of CpG islands and CpG methylation
(Arndt and Hwa, 2005; Bernardi, 2012; Zemach et al., 2010). Of
particular relevance here is a careful study of CpG and TpA deficien-
cies in human isochores that revealed covariation due to mathema-
tical consequences of dinucleotide overlap (Duret and Galtier, 2000).
Starting from that observation, that overlap implies mathematical
constraints, one can consider these constraints from an entirely
abstract point of view. Here, an exact and complete account of all
the mathematical consequences of dinucleotide, trinucleotide and
tetranucleotide overlap is provided for the first time. This will impact
statistical analysis of the composition of any type of nucleic acid, since
what is revealed are necessary relations which until now had not
been apparent, and such relations directly determine, among other
things, the number of degrees of freedom (Walker, 1940). It is likely
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that patterns seen in the analysis of raw sequence and gene expres-
sion data which are not specific to biological source (Zheng et al.,
2011) are in part reflections of the dependencies exposed here. The
new exact relations can also be used to design more logically
consistent mutation models, since any consistent model must respect
these dependencies. For a detailed case study of what this might
entail, the reader is referred to the study by Duret and Galtier (2000),
which improved upon an earlier mutation model (Sved and Bird,
1990) by taking aspects of dinucleotide overlap into account. The
results presented here allow one to go to a more fundamental level,
and design models which include the complete set of correct
dependencies in their basic formulation. The positive impact of
improved statistical analysis can be expected to increase the signal
to noise ratio in metagenomics, and could be built in to the algorithms
associated with large databases (Kryukov et al., 2012; Teeling et al.,
2004a). To illustrate what is meant on a practical level, a new relation
which can be directly applied in metagenomic composition analysis is
provided below, and derived in the Supplementary material.

The main result for dinucleotides is best illustrated by concrete
examples. The number of times the pair “CG” appears in the DNA
sequence of a circular genome can be computed using nothing
more than the numbers of times the pairs “GC”, “AC”, “CA”, “TC”
and “CT” appear, via the following exact formula:

#CG¼ #GCþ#AC�#CAþ#TC�#CT: ð1Þ
The circular mitochondrial genome of the fish Sardinops mela-

nostictus (Inoue et al., 2000) is a non-trivial example. It has 956
“GC” pairs, 1138 “AC” pairs, 1181 “CA” pairs, 1131 “TC” pairs and
1389 “CT” pairs. Inserting these into the equation, one finds that
there should be 956þ1138�1181þ1131�1389 or 655 “CG” pairs,
and this is indeed the case. Note that it was not necessary to know
the length of the genome, but the fact that it is circular does play a
role. Before explaining our general approach, let us describe one
direct way of deriving Eq. (1), using “N” as a wildcard which will
match any nucleotide: One expects that #CN equals #NC, since
both are effectively estimates of #C. Writing #CN¼#NC, removing
#CC from both sides and solving for #CG gives a rough derivation
of Eq. (1). The role of circularity of the molecule becomes clear
when one realises that #CN is exactly equal to #NC on a circular
genome, but they may differ by at most one for a linear genome,
with any difference due to a “C” at only one end. For example, the
linear sequence “CACGT” can be broken down into the four
dinucleotides “CA”, “AC”, “CG” and “GT”. Two begin with a “C”,
so #CN¼2. Only one ends in a “C”, so #NC¼1. One can see that
#CG¼1, but #GCþ#AC�#CAþ#TC�#CT¼0þ1�1þ0�0¼0, so
Eq. (1) has an error of one (the left hand side equals 1, but the right
hand side equals 0). If it were a circular molecule, there would be
an extra dinucleotide “TC”, completing the circle by linking the
final nucleotide back to the intitial nucleotide of “CACGT”. Eq. (1)
would then be satisfied exactly.

The general approach is elementary, and does not require full
formal treatment. It will be useful to imagine a bracelet made of a
piece of string threaded through a number of variously coloured
beads and then tied in a loop (Fig. 1). Whatever the colours are, it
will be possible to divide them up into two types. If the knot is
positioned such that it is visible between two specific beads, then,
once a direction has been chosen, the type of each bead can be
read out in order, beginning with the first bead after the knot, and
ending with the last bead reached before returning to the knot.
Every bead has a successor, from which it may or may not differ in
type. If, in passing from one bead to the next, the type changes
from that of the first bead to the other type, this can be imagined
as a step away from the starting type. If the next bead is of the
same type as the first bead, and the current bead is not, then that
can be imagined as a step back to the starting type. Now, since the
bracelet is a loop, we must finally return to the first bead, so the

numbers of steps away and back must always be equal. This is a
mathematical fact, not related to the materials the bracelet is
made of, nor to the procedure by which the colours were divided,
nor the position of the knot (Fig. 1).

If one strand of a circular genome or plasmid takes the place of the
bracelet, the same logic can be applied. Given the standard four
nucleotides, “G”, “A”, “T” (for DNA) or “U” (for RNA), and “C”, then there
are a number of choices which can be made concerning their type
assignments. One could consider purines (i.e. “A” and “G”) as one type,
and pyrimidines (“T” or “U”, and “C”) as another. In that case, the logic of
the argument leads to the conclusion that the number of nucleotide
pairs classified as purine�pyrimidine must equal the number of pairs
classified as pyrimidine�purine. This equality translates into the
equation #purine�pyrimidine¼#pyrimidine�purine, or, if the actual
nucleotide combinations are written out in full, assuming DNA,
#ATþ#ACþ#GTþ#GC¼#TAþ#CAþ#TGþ#CG.

A linear chromosome corresponds to an open string — a cut
bracelet. Let the string be cut between the final bead and the knot.
The last bead no longer has a successor, and so, if the first and last
beads differ in type, one change in type may be missed. The
equation may then only be an approximation, but since the worst
case is that only one step has been missed, the greatest error is
plus or minus one.

Experimentally determined genome sequences can have many
gaps. These correspond to many cuts in the string. One can treat
each uncut, or contiguous, piece as a linear molecule. For each one,
the worst case error is plus or minus one, so the worst case error for
a gapped sequence is plus or minus the total number of contiguous
subsequences. Human chromosome 1 (Gregory et al., 2006) (NCBI
RefSeq (Pruitt et al., 2014) Accession NC_000001.11) has 10145272
“GC”, 11598278 “AC”, 16768284 “CA”, 13844699 “TC” and 16444797
“CT” dinucleotides. Using Eq. (1), one arrives at the approximation

Fig. 1. A bracelet made from eight coloured beads threaded on a black string which
has been knotted. One could decide to group the reddish (“R”) and the greenish
(“G”) colours together. Starting at the bead to the immediate right of the knot, the
bracelet reads GRGGRRRGG, including the first bead once more at the end. The
number of times “GR” appears (two) equals the number of times “RG” appears.
Such combinatorial equalities are the basis of our approach.
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