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H I G H L I G H T S

� New moment dynamics model to describe the movement of interacting cell populations.
� Moment dynamics model applied to mimic two different cell biology experiments.
� Moment dynamics predictions outperform traditional mean-field PDE descriptions.
� Provide guidance regarding situations where the moment dynamics model is required.
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a b s t r a c t

Mathematical models describing the movement of multiple interacting subpopulations are relevant to many
biological and ecological processes. Standard mean-field partial differential equation descriptions of these
processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations
and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process
which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by
mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment
dynamics model with a traditional mean-field model confirms that the moment dynamics approach always
outperforms the traditional mean-field approach. To provide more general insight we summarise the perf-
ormance of the moment dynamics model and the traditional mean-field model over a wide range of
parameter regimes. These results help distinguish between those situations where spatial correlation effects
are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial
correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.

& 2015 Published by Elsevier Ltd.

1. Introduction

Biological and ecological processes often involve moving fronts of
interacting subpopulations. For example, in a biological setting, mal-
ignant spreading occurs when tumour cells interact with, and move
through, the stroma (Bhowmick and Moses, 2005; De Wever and
Mareel, 2003; Gatenby et al., 2006; Li et al., 2003). In an ecological
setting, the spreading of an invasive species involves moving fronts,
that, in some cases, is coupled with a retreating front of that species'
prey (Hastings et al., 2005; Phillips et al., 2007; Skellam, 1951).

Fig. 1 shows images of two different types of cell biology exp-
eriments involving moving fronts of interacting subpopulations. Fig. 1
(a)–(c) shows images of a co-culture scratch assay (Oberringer et al.,
2007). This assay is constructed such that initially we have two
subpopulations present in a certain region of the domain that is
adjacent to a vacant region. As time proceeds, the two subpopulations
spread into the vacant space. The image in Fig. 1(c) indicates that one
of the subpopulations is clustered, whereas the other subpopulation is
more evenly distributed. The image in Fig. 1(d) shows a subpopulation
of initially confined melanoma cells that are spreading into a surr-
ounding subpopulation of fibroblast cells (Li et al., 2003). These images
demonstrate that collective cell spreading processes can involve mov-
ing fronts of interacting subpopulations. Given the importance of
collective cell spreading processes to a range of biological applications,
including wound healing and malignant spreading, it is relevant for us
to develop robust mathematical and computational tools that can
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accurately describe the motion of these kinds of multispecies moving
front problems.

Previous mathematical modelling of problems involving moving
fronts of multiple interacting subpopulations have typically involved
studying systems of reaction–diffusion partial differential equations
(PDEs) (Gatenby and Gawlinski, 1996; Painter and Sherratt, 2003;
Sherratt, 2000; Simpson et al., 2007a,b; Smallbone et al., 2005). For
example, Sherratt (2000) considers a two-species model of tumour
growth. In this model, the movement of the tumour cell subpopula-
tion, vðx; tÞ, is inhibited by the stroma subpopulation, uðx; tÞ. Cell
proliferation is also influenced by crowding, since the rate of prolif-
eration is a decreasing function of the total cell density, uðx; tÞþvðx; tÞ
(Sherratt, 2000). More generally, Painter and Sherratt (2003) suggest
that the motion of interacting cell subpopulations depends on the
gradient of each particular species’ density, as well as the gradient of
the total cell density. Focusing specifically on tumour invasion,
Gatenby and Gawlinski (1996) propose a three-species model, where
the density of normal tissue decreases due to an excess concentration
of Hþ ions. Smallbone et al. (2005) extend the Gatenby and Gawlinski
three-species model by including a necrotic core within the tumour,
which is more consistent with biological observations. However, while
these models provide valuable insight into the interaction of multiple
cell subpopulations, they are limited in two ways. First, each of these
PDE models relies on invoking a mean-field assumption. That is, these
models implicitly assume that individuals in an underlying stochastic
process interact at a rate that is proportional to the average density
(Grima, 2008). This assumption amounts to the neglect of any spatial
structure present in the subpopulations (Law and Dieckmann, 2000).
Second, these PDE models describe population-level behaviour, and
do not explicitly consider individual-level information that could
be relevant when dealing with certain types of experimental data
(Simpson et al., 2013).

Instead of working directly with PDEs, mean-field descriptions of
collective cell behaviour have been derived from discrete individual-
level models (Binder and Landman, 2009; Codling et al., 2008;
Fernando et al., 2010; Khain et al., 2012; Simpson et al., 2009,
2010). These discrete models, which can also incorporate crowding
(Chowdhury et al., 2005), can be identified with corresponding
mean-field continuum PDE models that aim to describe the average
behaviour of the underlying stochastic process. Using this kind of
approach gives us access to both discrete individual-level informa-
tion as well as continuum population-level information. For example,
to model the migration of adhesive glioma cells, Khain et al. (2012)
derive a mean-field PDE description of a discrete process which
incorporates cell motility, cell-to-cell adhesion and cell proliferation.
However, while the relationship between the averaged discrete data
and the solution of the corresponding mean-field PDE description
is useful in certain circumstances, it is well-known that the assump-
tions invoked when deriving mean-field PDE descriptions are inap-
propriate in certain parameter regimes, due to spatial correlations
between the occupancy of lattice sites (Baker and Simpson, 2010;

Johnston et al., 2012; Simpson and Baker, 2011). The impact of spatial
correlation is relevant when we consider patchy or clustered dis-
tributions of cells, such as in Fig. 1(b) and (c). Baker and Simpson
(2010) partly address this issue by developing a moment dynamics
model that approximately incorporates the effect of spatial correla-
tion. Markham et al. (2013) extend this work, but focus on problems
where the initial distribution of cells is spatially uniform, meaning
that the modelling and computational tools developed by Markham
et al. (2013) are not suitable for studying the motion of moving fronts
of various interacting subpopulations.

In this work we consider a discrete lattice-based model for desc-
ribing the motion of a population of cells where the total population is
composed of distinct, interacting subpopulations. To understand how
our work builds on previous methods of analysis, we derive a standard
mean-field description of the discrete model and demonstrate that, in
certain parameter regimes, the mean-field model does not describe
the averaged discrete behaviour. By considering the dynamics of the
occupancy of lattice pairs, we derive one- and two-dimensional mom-
ent dynamics descriptions that incorporate an approximate descrip-
tion of the spatial correlation present in the system. Motivated by the
geometry of the two typical cell biology experiments in Fig. 1, we
apply our model to two case studies. The first case study is relevant to
co-culture scratch assays and the second case study is relevant to the
invasion of one subpopulation into another subpopulation, thereby
mimicking tumour invasion processes. Through these case studies we
demonstrate that our moment dynamics model provides a signifi-
cantly more accurate description of the averaged discrete model
behaviour. Finally, we discuss our results and outline directions for
future work.

2. Methods

2.1. Discrete model

We consider a lattice-based randomwalk model where each lattice
site may be occupied by, at most, one agent (Chowdhury et al., 2005).
The model is presented for situations where there are two subpopula-
tions, denoted by superscripts G and B, and we note that the frame-
work could be extended to include a larger number of subpopulations
if required. The superscripts G and B correspond to the colour scheme
in our figures where results relating to the G subpopulation are given
in green and results relating to the B subpopulation are given in blue.
The discrete process takes place on a one-dimensional lattice, with
lattice spacing Δ, where each site is indexed iA ½1;X�. Agents on the
lattice undergo movement, proliferation and death events at rates PmG ,
Pp
G, PdG and Pm

B , PpB, PdB per unit time, for subpopulations G and B,
respectively. During a potential motility event, an agent at site i
attempts to move to site i71, with the target site chosen with equal
probability. This potential event will be successful only if the target site
is vacant. A proliferative agent at site i attempts to place a daughter
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Fig. 1. Co-culture scratch assay containing human dermal microvascular endothelial cells (red) and human dermal fibroblasts (green) at (a) 0 hours, (b) 24 hours and (c) 48
hours. Adapted from Oberringer et al. (2007). (d) Human fibroblasts (blue) and TGF-β1 transduced 451Lu melanoma cells (brown), 19 days after subcutaneous injection into
immunodeficient mice. Adapted from Li et al. (2003). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this
paper.)Q4
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