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H I G H L I G H T S

� We developed a numerical method that can provide the structure of the division of alternative cyclic dynamics.
� We applied our method to different three-species systems in order to understand the ecological resilience of the systems showing cyclic dynamics.
� Our results suggested that the temporal variation of ecological resilience in cyclic dynamics cannot be understood straightforwardly because of the
complex structure of the basin boundaries.
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a b s t r a c t

Studies of catastrophic regime shifts have mostly considered a simple equilibrium situation, in which
there are two stable equilibria divided by an unstable equilibrium. However, populations and
communities in nature often show more complex dynamics, and regime shifts in the complex dynamic
systems have attracted limited attention so far. Understanding the division between alternative stable
states in multispecies communities requires an extended perspective and the conventional analysis of a
simple equilibrium situation cannot be applied as it is. What divides the alternative stable states can take
complex structure rather than a point, and this division of alternative states is usually impossible to be
obtained by analytical approaches. In this study, we developed a numerical method that can relatively
easily provide the structure of the division of alternative stable states. We then applied the method to
different three-species systems exhibiting oscillatory dynamics to understand their recoverability from
perturbations that can bring out irreversible state change. Our results suggested that there is temporal
variation of the recoverability that may not be understood straightforwardly because of the complex
structure of the division of alternative stable states. Also, which of the alternative states is more
vulnerable to perturbations and easier to show a regime shift can vary depending on the size of
perturbation. These attributes of regime shifts have not been found in a simple equilibrium situation,
suggesting the need of a dynamic aspect of the recoverability of ecological systems.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In ecological systems with alternative stable states (ASS, here-
after), there are possibilities of regime shifts by two different
mechanisms (Scheffer et al., 2001; Scheffer and Carpenter, 2003).
One is the gradual shift of parameters that can alter the stability of
stable states (attractors). In recent years, this mechanism has been
extensively studied in the attempts to find early warning signals for
the catastrophic regime shifts accompanied with gradual environ-
mental changes (Carpenter and Brock, 2006; Carpenter et al., 2008;

Dakos et al., 2008; Guttal and Jayaprakash, 2008; Scheffer et al.,
2009; Carpenter et al., 2011). Another mechanism is due to the
perturbations that can bring the state of a system into the basin of
attraction of a different stable state and thus trigger a regime shift
(Scheffer and Carpenter, 2003). In this study, we focus on this
mechanism by analyzing the recoverability of ecological systems
from perturbations. Such recoverability has been acknowledged in
the definition of “ecological resilience” (Holling, 1996; Gunderson,
2000) that measures the size of perturbation, against which the
system can hold its original state. However, this mechanism has
been seen largely conceptual and the practical description based on
theoretical consideration is still lacking.

Ecological resilience is usually explained by a double potential
well (Fig. 1a, e.g. Holling, 1996; Scheffer et al., 2001; Scheffer and
Carpenter, 2003). There are two potential minima and one maximum
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that correspond to stable states (stable equilibria) and a division of
the basins of attraction (unstable equilibrium), respectively. This
picture intuitively explains ecological resilience as the distance from
a stable equilibrium to an unstable equilibrium. However, this
conventional description lacks two important features of the reco-
verability of ecological systems (Fig. 1b). First, when a system
contains more than two species, the division of alternative states is
no longer a simple tipping “point” but a manifold that often takes a
complex structure. Second, the stable state may not be an equili-
brium but can be intrinsic fluctuations. In the dynamic system
theory, a division of alternative states corresponds to a basin
boundary (boundary of the basins of attraction), and the relationship
between stable states and the basin boundary can be shown in a
phase space whose axes are population densities of species included
in the system. Besides the special case in which basin boundary is a
point, it is usually impossible to obtain the basin boundary as an
analytical solution of a dynamic system, although it provides
essential knowledge on the recoverability of the stable states.

Theoretical studies have predicted ASS in ecological systems since
the 1960s (Lewontin, 1969; Holling, 1973; May, 1977), and the
existence of ASS has been suspected in a wide range of natural

systems [marine systems, Petraitis and Dudgeon (2004), Daskalov
et al. (2007); lakes and ponds, Cottenie et al. (2001), Carpenter et al.
(2011); rivers, Dent et al. (2002); terrestrial systems, McCune and
Allen (1985), Ripple and Beschta (2006)]. However, empirical find-
ings obtained from non-experimental approaches offer only indirect
evidence of ASS and are still open for alternative explanations. In
contrast, manipulation experiments provide direct evidence for the
presence or absence of ASS. Schröder et al. (2005) reviewed 35
manipulative experiments and found that 13 of them showed clear
evidence for ASS, whereas 8 demonstrated the absence of ASS (14
studies were not appropriate tests for ASS in their criteria). More
importantly, stable states in the five experiments showing ASS
included population fluctuations. Based on this finding, they insisted
that “it is not surprising that ASS can also contrast in the type of their
intrinsic dynamics” (e.g., Murdoch et al., 2002; De Roos and Persson,
2003; Wearing et al., 2004; McCauley et al., 1999; Henson et al.,
2002; Zamamiri et al., 2001), although “ASS are still often perceived
as contrasting equilibrium values where a system exhibits fix-point
stability in each of its states” (e.g., Beisner et al., 2003).

In the present study, based on the “straddle orbit” (Battelino
et al., 1988; Grebogi et al., 1988), a method to approximate the

Fig. 1. The difference between stability of equilibrial states divided by an unstable equilibrium and that of oscillatory dynamics divided by a basin boundary. (a) A potential
description explaining ecological resilience. Solid line describes the stability of equilibria. Dotted line indicates the position of tipping point (unstable equilibria) that corresponds to
the basin boundary between the two stable equilibria. (b) A diagram describing the phase space of a system that has two species and cyclic dynamics. Stable states are indicated by
solid loops (limit cycles) and are divided by a curve (dotted line) that is the basin boundary. Distance to the basin boundary (see our definition of LER in Section 2.2) is constant in the
bistability of equilibria (c), whereas there is temporal variation in the bistability of cyclic dynamics (d, indicated by the different lengths of arrows). In bistability with an unstable
equilibrium, the vulnerability of stable states (see our definition of VI in Section 2.2) increases with the perturbation size, and it shows the same contrast between the stable states
over the range of perturbation size (e). In a systemwith the non-point basin boundary, however, the increase of the vulnerability with the perturbation size can take various patterns
depending on the boundary structure (f, circles indicate perturbations having the same size). For simplicity, we described the stable states as a point equilibrium in (f).
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