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H I G H L I G H T S

� Intransitive competition (as in the game rock–paper–scissors) promotes coexistence.
� Spatial structure can enhance intransitivity-mediated coexistence.
� We model intransitivity on spatial, small-world, and regular random graphs.
� Coexistence that occurs in spatial lattices is inhibited as network disorder grows.
� Threshold disorder for monoculture is positively related to population size.
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a b s t r a c t

Intransitive competition occurs when competing strategies cannot be listed in a hierarchy, but rather
form loops—as in the game rock–paper–scissors. Due to its cyclic competitive replacement, competitive
intransitivity promotes strategy coexistence, both in rock–paper–scissors and in higher-richness
communities. Previous work has shown that this intransitivity-mediated coexistence is strongly
influenced by spatially explicit interactions, compared to when populations are well mixed. Here, we
extend and broaden this line of research and examine the impact on coexistence of intransitive
competition taking place on a continuum of small-world networks linking spatial lattices and regular
random graphs. We use simulations to show that the positive effect of competitive intransitivity on
strategy coexistence holds when competition occurs on networks toward the spatial end of the
continuum. However, in networks that are sufficiently disordered, increasingly violent fluctuations in
strategy frequencies can lead to extinctions and the prevalence of monocultures. We further show that
the degree of disorder that leads to the transition between these two regimes is positively dependent on
population size; indeed for very large populations, intransitivity-mediated strategy coexistence may
even be possible in regular graphs with completely random connections. Our results emphasize the
importance of interaction structure in determining strategy dynamics and diversity.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A main question in community ecology is how species can
coexist despite differences in competitive ability (Chesson, 2000;
Huston, 1994; Hutchinson, 1959; Tokeshi, 1999; Wilson, 1990,
2011). Many mechanisms have been proposed, most of which
invoke exogenous factors that lessen the impact of competition.
Here, we deal with a mechanism that is endogenous to the
competitive system itself: competitive intransitivity (Gilpin, 1975;

May and Leonard, 1975). Using simulation models, we consider
intransitive competition and coexistence among ‘strategies’, a gen-
eral term referring to any entities (most commonly species, but also
including physiological, behavioral, life-historical, and even ideolo-
gical variants or strains) that compete, and in doing so, have the
potential to exclude one another from their environment.

Transitive competition occurs when strategies can be listed in a
strict hierarchy in which strategies higher on the list outcompete
those lower on the list, but not vice versa. Transitive competition
appeals to the intuition: If strategy A outcompetes strategy B, and B
outcompetes C, it makes intuitive sense that A outcompetes C.
However, this is not necessarily the case. The simplest counter-
example, and, thus, the simplest example of intransitive competition,
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is the game of rock–paper–scissors, in which Paper beats Rock, Rock
beats Scissors, and Scissors beats Paper. In populations composed of
these three strategies, cyclic dynamics occur, leading to the potential
for the coexistence of all three, provided the fluxes in the cycles
are not too strong (e.g., Gilpin, 1975; May and Leonard, 1975;
Vandermeer, 2011). Rock–paper–scissors and its descendants are
fundamentally frequency-dependent phenomena, and the study of
intransitive competition and its effects on coexistence are important
facets of evolutionary game theory (Hofbauer and Sigmund, 1998;
Maynard Smith, 1982; Nowak, 2006; Sigmund, 2010). Extending
beyond theoretical considerations, real-world empirical examples of
intransitivity-mediated coexistence now span many branches of the
tree of life, including within or among bacteria (Kerr et al., 2002;
Kirkup and Riley, 2004; Nahum et al., 2011), vertebrate (Bleay et al.,
2007; Sinervo and Lively, 1996; Sinervo et al., 2007) and invertebrate
animals (Buss, 1976, 1980; Buss and Jackson, 1979; Dunstan and
Johnson, 2005; Jackson and Buss, 1975; Rubin, 1982), coralline algae
(Buss, 1976, 1980; Buss and Jackson, 1979), plants (Lankau and
Strauss, 2007; Taylor and Aarssen, 1990), and possibly phytoplankton
(Huisman and Weissing, 2001b) and yeasts (Paquin and Adams,
1983). Intransitivity also bears upon important issues in human
decision-making procedures (Kendall and Babington Smith, 1940;
May, 1954; Tversky, 2004), including voting systems (Arrow, 1950;
Hughes, 1980; Riker, 1961).

Although classic theory and simulation papers typically deal
with three-strategy intransitivity (e.g., Czárán et al., 2002; Durrett
and Levin, 1998; Frean and Abraham, 2001; May and Leonard,
1975; Neumann and Schuster, 2007; Schreiber and Killingback,
2013; Szabó et al., 2004; Tainaka, 1988), and many of the empirical
examples above involve variants of rock–paper–scissors (e.g.,
toxic, resistant, and susceptible strains of Escherichia coli (Kerr
et al., 2002); orange, yellow, and blue chromo-behavioral morphs
of side-blotched lizards (Sinervo and Lively, 1996)), the study of
the relationship between competitive intransitivity and coexis-
tence can be generalized to more strategy-rich communities
(Gilpin, 1975; Huisman and Weissing, 1999, 2001a,b; Huisman et
al., 2001; Karlson and Jackson, 1981; Laird and Schamp, 2006,
2008, 2009). This reflects the facts that (a) in many systems, multi-
strategy communities are common (e.g., multi-species commu-
nities in biological systems or multiple ideologies in the socio-
political sphere), and (b) intransitivity readily results from typical
traits of these multi-strategy communities, such as trade-offs
during exploitation competition (Huisman and Weissing, 1999,
2001a,b; Huisman et al., 2001) and allelopathy (Kerr et al., 2002;
Lankau and Strauss, 2007). When this generalization is made, the
transitive-intransitive dichotomy gives way to a series of inter-
mediately intransitive competition scenarios that becomes
increasingly continuous as the number of strategies grows. The
level of intransitivity across this continuum can be quantified
using an index (Bezembinder, 1981; Kendall and Babington Smith,
1940; Laird and Schamp, 2006, 2008; Petraitis, 1979; Slater, 1961),
making it straightforward to examine quantitatively the relation-
ship between strategy coexistence and intransitivity. As would be
expected by extrapolating the lesson of three-strategy coexistence,
competitive intransitivity also promotes strategy coexistence
when more than three strategies are involved (e.g., Allesina and
Levine, 2011; Karlson and Jackson, 1981; Laird and Schamp, 2006,
2008, 2009; Rojas-Echenique and Allesina, 2011; but see
Vandermeer and Yitbarek, 2012 for a counterexample). Thus,
intransitivity may play an important role in maintaining diversity
in communities of varying types.

The simplest intransitivity models within evolutionary game
theory have no interaction structure; rather, they behave accord-
ing to mean-field assumptions, whereby strategies embedded in
large, well-mixed communities interact according to their relative
abundances and the principle of mass action (e.g., Allesina and

Levine, 2011; Frean and Abraham, 2001; Gilpin, 1975; May and
Leonard, 1975). Allesina and Levine (2011) provide an effective
means to deal with these models and predict the outcome of
competition. However, paralleling the rising interest in the effect
of interaction structure in evolutionary game theory in general
(particularly in models designed to understand the evolution of
cooperation, and, specifically, how cooperators and defectors can
coexist: Hauert, 2001, 2002, 2006; Hauert and Doebeli, 2004;
Laird, 2011, 2012, 2013; Laird et al., 2013; Lieberman et al., 2005;
Nowak and May, 1992, 1993; Nowak et al., 1994a,b; Szabó and
Tőke, 1998; Szolnoki et al., 2008), there is a proliferation of studies
of intransitive competition in which mean-field assumptions are
relaxed (e.g., Durrett and Levin, 1998; Frean and Abraham, 2001;
Károlyi et al., 2005; Laird, 2014; Reichenbach et al., 2007;
Schreiber and Killingback, 2013; Szabó et al., 2004; Szolnoki and
Szabó, 2004; Tainaka, 2001; Zhang et al., 2009). The general lesson
is that variation in interaction structure can modify greatly the
outcome of competition in intransitive systems.

Spatial structure, whereby individuals interact preferentially
(or solely) with their nearest neighbors, is one of the main types of
interaction structure that has been modeled in the context of
intransitivity-mediated strategy coexistence (Durrett and Levin,
1998; Frean and Abraham, 2001; Kerr et al., 2002; Laird and
Schamp, 2006, 2008, 2009). This type of structure is particularly
relevant in biological systems whose members are largely sessile
and confined to a two-dimensional substrate (e.g., biofilms (Kerr et
al., 2002); encrusting benthic invertebrates (Dunstan and Johnson,
2005; Wootton, 2001)). Generally speaking, simulations predict
that spatially explicit interactions enhance intransitivity-mediated
coexistence (e.g., Durrett and Levin, 1998; Frean and Abraham,
2001; Kerr et al., 2002; but see Laird and Schamp, 2008; Rojas-
Echenique and Allesina, 2011). This prediction is supported by key
experimental data (e.g., Kerr et al., 2002).

The advent of evolutionary graph theory (Lieberman et al.,
2005; Nowak, 2006; Perc et al., 2013; Szabó and Fáth, 2007)
provides a framework whereby individuals interacting in arbitra-
rily structured populations can be studied. In this manner, spatial
structure becomes a special case of interaction topology. As with
spatial extensions of evolutionary game theory, more general
graph-theoretical extensions are strongly influenced, in terms of
approach, by recent models of the evolution of cooperation (Du et
al., 2009; Hadzibeganovic et al., 2012; Lieberman et al., 2005; Lima
et al., 2009; Nowak, 2006; Pacheco et al., 2006; Szolnoki and Perc,
2009; Szolnoki et al., 2008; Wang et al., 2006). In evolutionary
graph theory, individuals interact with a subset of the population/
community to which they belong, though not necessarily with
those that are spatially close. In terms of intransitivity-mediated
strategy coexistence, evolutionary graph theory is most relevant in
humans and other species in which the existence of social net-
works can lead to complex population-level interaction structures.
Additionally, there are other systems (biological, social, and
technological) where interactions on graphs or networks are the
norm (Watts and Strogatz, 1998). Finally, even in systems where
aspatial interaction graphs are unlikely, modeling the outcome of
interactions on such graphs may provide a point of contrast—a tool
with which salient aspects of more realistic interaction structures
can be examined in detail (e.g., Laird, 2014).

Szabó et al. (2004) and Szolnoki and Szabó (2004) consider the
rock–paper–scissors game along a continuum of regular, small-
world networks (Watts and Strogatz, 1998) ranging from spatial
lattices to regular random graphs (also see Kuperman and
Abramson, 2001; Laird, 2014; Ying et al., 2007). They show that
by increasing quenched randomness (profitably thought of as an
inverse measure of inherent spatial structure), disparate parts
of the network become synchronized, leading to a Hopf bifurcation
at which the strategy frequency dynamics transition from a
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