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H I G H L I G H T S

� We investigate Markov models of character evolution on Yule trees.
� We derive the marginal distribution of pairwise interspecies covariance.
� We derive the distribution of the number of segregating sites on a Yule tree.
� A new measure of phylogenetic information is proposed for trees with n tips.
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a b s t r a c t

Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally
on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in
phylogenetic trees is the Yule process, in which new species are “born” from existing lineages at a
constant rate. Recent work has illuminated some of the structural properties of Yule trees, but it remains
mostly unknown how these properties affect sequence and trait patterns observed at the tips of the
phylogenetic tree. Understanding the interplay between speciation and mutation under simple models
of evolution is essential for deriving valid phylogenetic inference methods and gives insight into the
optimal design of phylogenetic studies. In this work, we derive the probability distribution of
interspecies covariance under Brownian motion and Ornstein–Uhlenbeck models of phenotypic change
on a Yule tree. We compute the probability distribution of the number of mutations shared between two
randomly chosen taxa in a Yule tree under discrete Markov mutation models. Our results suggest
summary measures of phylogenetic information content, illuminate the correlation between site
patterns in sequences or traits of related organisms, and provide heuristics for experimental design
and reconstruction of phylogenetic trees.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Simple stochastic models of speciation and trait evolution have
proven useful for reconstruction of phylogenetic trees describing the
ancestral relationship between sets of taxa. The simplest continuous-
time model of speciation is the Yule process, in which each extant
lineage gives birth at constant rate λ. A Yule tree is a phylogenetic
tree in which the branching times of the tree are drawn from the
Yule distribution. Despite the apparent simplicity of the Yule process,
Yule trees have complex structural properties (Steel and McKenzie,

2002; Rosenberg, 2006; Gernhard et al., 2008; Steel and Mooers,
2010; Mulder, 2011; Crawford and Suchard, 2013). The Yule process is
usually employed as a prior or null distribution on the space of
phylogenetic trees within a broader scheme of phylogenetic recon-
struction (Nee et al., 1994; Rannala and Yang, 1996; Nee, 2006).
Researchers impose a model for the evolution of a character (trait,
DNA, RNA, or amino acid sequence) on the branches of this
phylogenetic tree. By jointly estimating the phylogenetic tree topol-
ogy, branch lengths, and the parameters underlying the evolutionary
model, researchers hope to understand the evolutionary history and
process that gave rise to the observed data.

Research on the interaction of tree topology, branch lengths, and
evolutionary processes generally falls into one of two categories. The
first is the search for better measures of phylogenetic information for
prospective experimental design. Most of these studies examine the
probability of correctly reconstructing a simple tree or optimal design
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of phylogenetic studies (Yang, 1998; Sullivan et al., 1999; Shpak
and Churchill, 2000; Zwickl and Hillis, 2002; Susko et al., 2002).
Several authors have attempted to determine whether it is better to
add more taxa or additional characters to maximize the chance of
reconstructing the correct tree (Graybeal, 1998; Zwickl and Hillis,
2002). Steel and Penny (2000) analyze basic models of evolution to
understand the theoretical properties of stochastic models on
phylogenetic trees. Fischer and Steel (2009) consider asymptotic
sequence length bounds for correct reconstruction under maximum
parsimony. Townsend (2007) introduces “phylogenetic informative-
ness”, the probability of observing site patterns allowing correct
reconstruction of a four-taxon tree. Susko (2011) and Susko
and Roger (2012) find expressions for correct reconstruction prob-
ability for small internal edges on four-taxon trees. Real-world
phylogenetic studies often involve large numbers of taxa, and it
remains controversial whether properties of mutation models on
four-taxon trees generalize to trees with larger numbers of taxa
(see e.g. Townsend, 2007; Klopfstein et al., 2010; Townsend and
Leuenberger, 2011).

The second class of approaches focuses on retrospective infer-
ences about evolutionary parameters and the derivation of estima-
tors and confidence intervals. Following the work of Stadler (2009),
who describes sampling properties of birth–death trees and the
distribution of the age of the most recent common ancestor (MRCA)
of subsets of randomly chosen taxa, Bartoszek and Sagitov (2012)
and Bartoszek (2013) find expressions for the expectation of the
interspecies correlation under models of continuous trait evolution
via diffusion and Ornstein–Uhlenbeck processes. Bartoszek and
Sagitov (2012) derive asymptotic confidence intervals for ancestral
trait values under these models. Crawford and Suchard (2013) give
an estimator for the evolutionary variance under Brownian motion
for an unobserved Yule tree.

In this paper we study the distribution of character values observed
at the tips of a phylogenetic tree generated by the Yule process. We
first state two theorems that describe the distribution of the time of
shared ancestry between two randomly chosen taxa in a Yule tree of
age τ with n taxa and speciation rate λ. Next we extend results
presented by Bartoszek and Sagitov (2012) and Bartoszek (2013) to
find the exact probability distribution and covariance between pairs of
randomly chosen tip values under Brownian motion and Ornstein–
Uhlenbeck evolution of a continuous trait. These results give insight
into the finite-time, finite-n dynamics of interspecies correlation.
Next we examine discrete character evolution on Yule trees under
Poisson and reversible Poisson mutation models. We suggest a new

measure of phylogenetic information and give a method for deciding
whether it is better to add taxa or sites to a phylogenetic analysis.

2. Background

A Yule process Y(t) is a continuous-time Markov chain on the
positive integers in which a jump from state n to nþ1 occurs with
rate nλ. Define PY

mnðtÞ ¼ PrðYðtÞ ¼ n∣Yð0Þ ¼mÞ to be the transition
probability from state m to n in time t. The Yule process obeys the
forward Kolmogorov equations:

dPY
mnðtÞ
dt

¼ ðn�1ÞλPY
m;n�1ðtÞ�nλPY

mnðtÞ ð1Þ

for mZ1 and nZm. The transition probabilities are

PY
mnðtÞ ¼

n�1
m�1

� �
e�λmtð1�e�λtÞn�m ð2Þ

(Bailey, 1964). A Yule tree is a binary tree in which the number of
extant lineages at time t is given by the Yule process Y(t). If there are
n extant lineages and a “birth” event occurs, one of the n lineages is
chosen uniformly at random and split into two. In this paper, we
assume that at the MRCA of all n taxa existed at time 0. We model
t¼0 as the time of the first split, so Yð0Þ ¼ 2, and both tree size
(number of taxa) n and age τ are given. Inwhat follows, we limit our
attention to the ðn�1Þ! unlabelled, ranked, oriented trees that make
up an n-forest, since our conclusions readily carry over to the
n!ðn�1Þ!=2n�1 leaf-labelled, ranked Yule trees of phylogenetic
interest (Gernhard et al., 2008; Mulder, 2011).

We now consider pairs of tips on a Yule tree whose MRCA is the
kth birth event. We call these events “nodes” in the tree. The kth
node is preceded chronologically by k�1 nodes, and this node
emerges at time x since the first split. The kth node corresponds to
the “crown age” of the sub-tree or clade below the node. Fig. 1
shows an example in which the kth birth event, preceded by k�1
such events, takes place at time x. In continuous time each n-tree
pattern of this type, with tree age τ and with the kth node
appearing at time x, has the same probabilistic weight, and hence
these trees can be dealt with on equal footing using purely
combinatorial arguments. The following result gives the probabil-
ity of two randomly chosen tips in a phylogenetic tree having their
MRCA at the kth node. It was first derived by Stadler (2009).

Theorem 1. The probability of randomly choosing two tips in a tree
of size n whose MRCA is the kth node is

Pðn; kÞ ¼ 2ðnþ1Þ
ðn�1Þðkþ1Þðkþ2Þ ð3Þ

for nZkþ1 (Stadler, 2009).

Appendix A gives a simple alternative proof of this fact using
recurrence relations.

We now consider the time of shared ancestry of two randomly
chosen taxa, the age of their MRCA. Theorem 1 provides the
probability of choosing two tips whose MRCA is the kth node; here
we seek the distribution of the age x of this node.

Lemma 1. The probability density of time x of the kth node of a Yule
tree of age τ and size n is

for 0rxrτ, where δðxÞ is the Dirac delta function.

Appendix B provides a derivation.
Now we study the age of the MRCA of two randomly chosen

taxa without conditioning on the MRCA being the kth node in the
tree. Finding the marginal distribution of x by summing Pðn; kÞ
over k with respect to (4), we arrive at

pðxjn; τ; λÞ ¼ ∑
n�1

k ¼ 1
Pðn; kÞ pðxjk;n; τ; λÞ: ð5Þ

where Pðn; kÞ is given by Theorem 1 and pðxjk;n; τ; λÞ is given by
Lemma 1. The following Theorem gives a closed-form expression
for this probability.

pðxjk;n; τ; λÞ ¼

δðxÞ; k¼ 1

λðn�2Þ n�3
k�2

� �
e�ðk�1Þλðτ�xÞð1�e�λxÞk�2ð1�e�λðτ�xÞÞn�k�1

ð1�e�λτÞn�2 ; kZ2

8>>><
>>>:

ð4Þ
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