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H I G H L I G H T S

� New holistic control approach helps solve the pathogen exclusion problem.
� Results inform design of exclusion strategies in complex forced conditions.
� New method for solving the highly unstable optimal exclusion problem.
� New method to find R_0 analytically under multi-component forcing.
� Investigation of epidemiological conditions using 2-stage control analysis.
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a b s t r a c t

The pathogen exclusion problem is the problem of finding control measures that will exclude a pathogen
from an ecological system or, if the system is already disease-free, maintain it in that state. To solve this
problem we work within a holistic control theory framework which is consistent with conventional
theory for simple systems (where there is no external forcing and constant controls) and seamlessly
generalises to complex systems that are subject to multiple component seasonal forcing and targeted
variable controls. We develop, customise and integrate a range of numerical and algebraic procedures
that provide a coherent methodology powerful enough to solve the exclusion problem in the general
case. An important aspect of our solution procedure is its two-stage structure which reveals the
epidemiological consequences of the controls used for exclusion. This information augments technical
and economic considerations in the design of an acceptable exclusion strategy. Our methodology is used
in two examples to show how time-varying controls can exploit the interference and reinforcement
created by the external and internal lag structure and encourage the system to ‘take over’ some of the
exclusion effort. On–off control switching, resonant amplification, optimality and controllability are
important issues that emerge in the discussion.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that variability in the environment can have a
significant impact on the dynamic behaviour of epidemiological
systems whether they involve humans or animals or both (Chesson,
1982; Grassly and Fraser, 2006). Of particular interest is periodic
variation, especially seasonality, but there are other examples where
the period is greater than a year (e.g. El Nino (Koelle et al., 2005) and
African rain patterns (Wichmann et al., 2003)) or less than a year (e.g.
marine life subject to tidal or light intensity cycles (Rinaldi et al.,
1993)). In simple epidemiological systems environmental forcing acts
primarily through infection transmission. This is the case in childhood

diseases such as measles (Dietz, 1976) where the seasonal variation is
caused by the term structure of the school year. In other cases several
forcing components are in play. A study of conjunctivitis in house
finches (Hosseini et al., 2004) found that infection is transmitted in the
autumn/winter when there is population aggregation but breeding
takes place in the summer when there is dispersal. These two seasonal
effects are ‘out of phase'. A third example, also highlighting the
importance of lags, is that of a managed game-bird population subject
to two forms of variable external forcing: A seasonally transmitted
disease and ‘harvesting' restricted to particular times of the year. The
choice of lag between transmission and harvesting determines
whether harvesting reduces or increases the impact of the disease
(Choisy and Rohani, 2006).

Another important factor that influences how external forcing
affects a system is the number and nature of the different infected host
types (Diekmann et al., 1990, 2010). Unforced systems with more than
one host type have received a lot of attention in the literature, for
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example Anderson and May (1981, 1986) and many others. Of
particular interest recently has been the spread of bovine TB between
badgers and livestock (Cox et al., 2005, Lintott et al., 2013) and the
dominance of the grey over the red squirrel population because of
reinforcement between direct competition and apparent competition
mediated by a parapox virus (Tompkins et al., 2003). Much less work
has been carried out on how external forcing affects transmission
between species and there remains much more to do in this area
(Brassil, 2006). However, seasonality in host-vector systems has
received some attention. Bacaer and Guernaoui (2006) analysed a
seasonal model for leishmaniasis in Chichaoua, Morocco while Wang
and Zhao (2008) studied a simple seasonal model for dengue.

The specific problem studied in this paper is how to exclude a
pathogen from an epidemiological system or how to maintain that
exclusion if the system is already disease-free. In the absence of
forcing and with constant controls the exclusion problem can be
solved explicitly for a standard model in terms of its resident
asymptotic state even when there are multiple host types
(Diekmann et al., 1990, 2010). With forcing present the exclusion
problem is much more difficult to solve (Heesterbeek and Roberts,
1995; Bacaer and Guernaoui, 2006; Wang and Zhao 2008). Most
applications have been limited to the simplest cases with forcing
only on infection transmission and no structure in the resident
subsystem. Further advances in solution methods are necessary to
study the new opportunities for bringing about exclusion that are
created when these limitations are removed.

Our primary objective in this paper therefore is to contribute to
the development of a sufficiently powerful coherent and insightful
methodology to solve the exclusion problem for the general case of
complex epidemiological systems that have a structured resident
subsystem (with predation or competitive forces in play for exam-
ple), multiple infected host types and subject to variable controls and
multiple seasonal forcing components. Since the exclusion problem is
a control problem, involving intervention with a set of control
measures, we work within a control theory framework to find the
levels of these controls that bring about exclusion. Our methodology
involves the following three main components: An approximation
procedure that replaces nonlinearities by explicitly solvable linear
equations (Greenman and Pasour, 2012); monodromy theory on
which to base the numerical calculations (Hale, 1969); optimal
control theory of use in exploring the impact of variable controls
(Lenhart andWorkman, 2007). Integrating these different procedures
creates an efficient ‘fit for purpose' exclusion methodology and, in so
doing, divides the exclusion process into two distinct stages that
provide insight into the epidemiology of exclusion and connectivity
with other approaches to be found in the literature.

The paper is set out as follows. In Section 2 there is a general
discussion on how to solve the exclusion problem for a special
control u that will later provide the link to all other controls of
interest. In Section 3 the exclusion procedure is applied to invasion
systems with one infected state and in Section 4 to systems with
2 or more such states. It is in Sections 3.4 and 4.4 where it is shown
how to extend the theory to handle a general set of pre-emptive
controls. Examples illustrate what difference forcing can make to
the exclusion dynamics and what mechanisms are activated during
forcing to explain the changes. This involves comparing systems
with single or multiple host types, forcing with single or multiple
components and controls that are constant or variable.

2. The pathogen exclusion problem from a control theory
perspective

In Section 2.1 we introduce the rare invader approximation that
simplifies the solution of the exclusion problem by dividing it into
two stages. Further we introduce the special control u that

removes a proportion of the newly infecteds and define the ‘effort’
required to remove the pathogen using this control. In Section 2.2
we describe how to apply the zero invader growth condition for
exclusion by relating this condition to the eigenvalues of the
monodromy matrix. We discuss the relationship between exclu-
sion effort and the basic reproduction number R0 when control u is
constant and highlight the strengths of the control approach.

2.1. The rare invader approximation

Consider the controlled epidemiological system modelled by
the following equations:

dx
dt

¼ f ðx; y;u; tÞ ð1aÞ

dy

dt
¼ gðx; y;u; tÞ ð1bÞ

where x is the vector of uninfected (resident) populations (for
example the susceptibles and the immune), y the vector of the
infected (invader) populations and u the vector of controls. Eq. (1a)
are the ‘resident equations' and (1b) the ‘invasion equations’. This
system is subject to periodic environmental forcing as indicated by
the explicit time dependence t of functions f, g. We are particularly
interested in the case that control u is variable in time but first we
consider the simpler case where it is constant.

The solution of the (pathogen) exclusion problem (to exclude or
prevent invasion of a pathogen) is simplified by using the Rare Invader
Approximation (RIA) which assumes that the number of infecteds is so
small that they can be ignored in the resident Eq. (1a) and so small
that the invasion Eq. (1b) can be linearised about the disease free
equilibrium. This approximation holds in the early stage of an
invasion or in the final stage of exclusion. The RIA defines a two-
stage solution procedure: First solve the decoupled resident equa-
tions: dx=dt ¼ f ðx;0;u; tÞ for x. Then solve the linear invasion
equations after substitution of the asymptotic resident solution, x1,
i.e. solve: dy=dt ¼ Gðx1;0;u; tÞy where Gðx; y;u; tÞ ¼ ∂g=∂y is the
matrix of derivatives of vector function g. Matrix G is the Jacobian
for the invasion subsystem and will be labelled more simply as J

dy

dt
¼ J:y ð2Þ

The problem is to find controls u where the asymptotic growth
rate of the infected populations in (2) is zero. These solutions define
the ‘pathogen threshold' separating solutions where the growth
rate is negative (i.e. the pathogen is excluded) and positive (i.e. the
pathogen invades). On this threshold the RIA becomes exact and so
its use in solving the exclusion problem is appropriate.

In epidemiological models with compartmental structure and
with the controls inactive, matrix J in (2) can be written as J¼F–V
where F is the transmission matrix specifying the number of newly
infecteds (per infected individual) for each host type and V is the
transition matrix that specifies the flow rates between compart-
ments and with the external world. The term ‘host type’ identifies
the state a host enters at the point of infection and hence the
different ways in which infection can occur (Diekmann and
Heesterbeek (2000); Hartemink et al. 2008). We will also use the
term ‘infected state’ to identify the states a host can be in
throughout its infected lifetime. The host types identify a subset
of the infected states. For example, for the SEIR model there is one
host type (the latent state E), but two infected states (the latent
state E and the infectious state I). For the SISI model, describing
the transmission of disease without latency within and between
two host species, there are two host types corresponding to the I
states and these are also the infected states. This model is
discussed in Section 4.
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