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H I G H L I G H T S

Q 2
� An hypothesis for the onset and maintenance of out-of-phase periodic dynamics in two inherently chaotic subpopulations coupled with low dispersal
is proposed.

� The propensity of chaotic dynamics in single species population growth models to visit very low sizes is critical to the onset of out-of-phase dynamics
in two coupled inherently chaotic subpopulations.

� The stabilization of chaotic to periodic dynamics is likely due to dispersal placing upper and lower limiters to subpopulation size.
� The components of the hypothesis are supported by the results of simulations of the various proposed effects using the Ricker (with and without
extinction), logistic and Hassell models.
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a b s t r a c t

Much research in metapopulation dynamics has concentrated on identifying factors that affect
coherence in spatially structured systems. In this regard, conditions for the attainment of out-of-
phase dynamics have received considerable attention, due to the stabilizing effect of asynchrony on
global dynamics. At low to moderate rates of dispersal, two coupled subpopulations with intrinsically
chaotic dynamics tend to go out-of-phase with one another and also become periodic in their dynamics.
The onset of out-of-phase dynamics and periodicity typically coincide. Here, we propose a possible
mechanism for the onset of out-of-phase dynamics, and also the stabilization of chaos to periodicity, in
two coupled subpopulations with intrinsically chaotic dynamics. We suggest that the onset of out-of-
phase dynamics is due to the propensity of chaotic subpopulations governed by a steep, single-humped
one-dimensional population growth model to repeatedly reach low subpopulation sizes that are close to
a value Nt¼A (Aaequilibrium population size, K) for which Ntþ1¼K. Subpopulations with very similar
low sizes, but on opposite sides of A, will become out-of-phase in the next generation, as they will end
up at sizes on opposite sides of K, resulting in positive growth for one subpopulation and negative
growth for the other. The key to the stabilization of out-of-phase periodic dynamics in this mechanism is
the net effect of dispersal placing upper and lower bounds to subpopulation size in the two coupled
subpopulations, once they have become out-of-phase. We tested various components of this proposed
mechanism by simulations using the Ricker model, and the results of the simulations are consistent with
predictions from the hypothesized mechanism. Similar results were also obtained using the logistic and
Hassell models, and with the Ricker model incorporating the possibility of extinction, suggesting that the
proposed mechanism could be key to the attainment and maintenance of out-of-phase periodicity in
two-patch metapopulations where each patch has local dynamics governed by a single-humped
population growth model.

& 2014 Published by Elsevier Ltd.
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1. Introduction

Many theoretical and empirical studies have indicated that syn-
chronous dynamics among the constituent subpopulations can affect
the stability of metapopulations, and that dispersal among subpopula-
tions is a major factor affecting the spatial synchrony of subpopulation
dynamics (Allen et al., 1993; Hastings, 1993; Gyllenberg et al., 1993;
Kendall and Fox, 1998; Ruxton, 1994; Heino et al., 1997; Ranta et al.,
1998; Earn et al., 2000; Ylikarjula et al., 2000; Molofsky and Ferdy,
2005; Dey and Joshi, 2006a; Ben-Zion et al., 2010, 2012). Theoretical
studies have shown that subpopulations with inherently chaotic
dynamics can exhibit out-of-phase periodic dynamics when coupled
at low to intermediate rates of dispersal, whereas higher rates of
dispersal can result in local synchronization and a simultaneous shift
to chaos from periodicity (Ben-Zion et al., 2010; Dey et al., 2014).
Interestingly, in systems of two coupled populations with inherently
chaotic dynamics, the attainment of out-of-phase dynamics typically
coincides with the stabilization of local dynamics of both populations
to periodicity (Ben-Zion et al., 2010; Dey et al., 2014). However, the
mechanism for the attainment of out-of-phase dynamics and simul-
taneous stabilization of local dynamics from chaos to periodicity in
two coupled populations is not clear. Here, we propose a possible
explanation for both the onset and maintenance of out-of-phase
periodic population dynamics in single-species two-patch metapopu-
lations with low levels of dispersal, and test the postulated compo-
nents of this explanation using simulations largely based on two
coupled Ricker (1954) maps, although we also verified the results with
other single-species population growth models. We chose the Ricker
model to test our hypothesis because this is a simple two-parameter
model routinely used to study the synchrony and dynamics of single-
species discrete-time metapopulations (Ruxton, 1994; Earn et al.,
2000; Ben-Zion et al., 2010; Braverman and Haroutunian, 2010;
Singh et al., 2011, Livadiotis and Elaydi, 2012; Poria et al., 2013).
Moreover, the Ricker model has been shown to successfully capture
the gross dynamics of a wide variety of natural and laboratory
populations, despite its simplicity (Dey and Joshi, 2006a; Cheke and
Holt, 1993; Sheeba and Joshi, 1998; Ives et al., 2004). In addition, to
explore the generality of our results, we also examined the behaviour
of similar coupled two-patch systems with local dynamics governed
by the logistic and Hassell et al. (1976) models, or by Ricker models
with probabilistic extinction thresholds introduced. Although more
complex metapopulation models composed of coupled two-species
models have also been reported to have the propensity to exhibit out-
of-phase dynamics at lower rates of coupling (Goldwyn and Hastings,
2011), the hypothesis proposed in this paper focuses exclusively on
single-species metapopulations modeled by coupled Ricker or related
single-humped discrete population growth models.

2. The hypothesis

We consider a two-patchmetapopulation, with each subpopulation
following Ricker (1954) dynamics [Ntþ1¼Nt exp (r (1�Nt/K)); where
Nt¼population size at generation t, r¼maximum per-capita growth
rate, and K¼equilibrium population size] at identical high (chaotic)
values of r and identical values of K. The qualitative dependence of
Ricker dynamics on r is depicted in Fig. S1. The two subpopulations are
coupled by symmetric fixed-fraction dispersal at some rate 0rmr1.
Therefore, the iterative equations for the per-generation change in the
sizes N1 and N2 of the model subpopulations are:

N1;tþ1
n ¼N1;texp r 1–N1;t=K

� �� � ð1:1Þ

N2;tþ1
n ¼N2;texp r 1–N2;t=K

� �� � ð1:2Þ

N1;tþ1 ¼ 1–mð ÞN1;tþ1
nþmN2;tþ1

n ð1:3Þ

N2;tþ1 ¼ 1–mð ÞN2;tþ1
nþmN1;tþ1

n ð1:4Þ

Following Ben-Zion et al., 2010, 2012, we treat the two sub-
populations as being out-of-phase when they show opposite direc-
tions of growth from a given generation to the next, i.e. one
subpopulation reduced in size (negative growth) while the other
increased in size (positive growth). Thus, the onset of such out-of-
phase dynamics at generation t requires that the two subpopula-
tions should have sizes N1,t and N2,t on opposite sides of K,
respectively. This is trivially achieved if the two subpopulations
start at sizes N1,0 and N2,0 on opposite sides of K (henceforth,
inherently out-of-phase initial conditions). However, simulations of
the system described above revealed that two coupled chaotic
subpopulations can go out-of-phase even if they start with sizes
N1,0 and N2,0 on the same side of K. Moreover, we found that
synchrony in such two-patch systems does not depend on initial
conditions when the two subpopulations have high r: two coupled
chaotic subpopulations go out-of-phase irrespective of the relation-
ship of their initial sizes N1,0 and N2,0 to K (data not shown). Our
hypothesis aims to explain the onset of out-of-phase dynamics, and
its subsequent maintenance over generations, in metapopulations
consisting of two coupled subpopulations with Ricker dynamics
that do not start from inherently out-of-phase initial conditions.

For the Ricker model at chaotic r values, return maps (plots of
Ntþ1 versus Nt) show a portion with very steep positive slope at
very low values of Nt (Fig. 1). Therefore, slight differences between
two populations in very low Nt values can lead to considerable
differences in their population sizes at generation tþ1. As can be
seen in Fig. 1, the point A represents the value of Nt (NtaK) yielding
Ntþ1¼K. Hence, in a given generation, if two populations, both of
size quite low compared to K, happen to attain sizes on opposite
sides of point A, in the next generation, the size of the subpopula-
tion to the left of A in Fig. 1 will remain below K whereas the size of
the subpopulation to the right of A will increase above K, even
though their sizes were not very different in the previous genera-
tion. Inspection of time series revealed that isolated chaotic
subpopulations with high r values often drop to this low population
size zone around A from high sizes in the previous generation (data
not shown). This scenario, where the two subpopulations have very
similar sizes, but on opposite sides of point A, can lead to the onset
of out-of-phase dynamics as the two subpopulations will have sizes
on opposite sides of K in the next generation. Note that a
prerequisite for the operation of this phenomenon is an inherent
propensity of the populations to reach very low sizes around point
A frequently. Unlike in chaotic dynamics, in the case of relatively
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Fig. 1. Return map of the Ricker equation (r¼3.8) showing the position of the
sensitive point A for K¼25. Note that if the sizes of two populations fall on opposite
sides of A in generation t, they will reach opposite sides of K in generation tþ1.
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