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H I G H L I G H T S

� Investigate bifurcations of equilibria in the oncolytic virus dynamics model with exponential growth of tumor cells and slow virus-spread.
� Find conditions of parameters for saddle-node bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcation.
� Give thresholds for slow virus-spread to control the population of tumor cells within an appropriate range.
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a b s t r a c t

Great attention has been paid to cancer therapy by means of oncolytic viruses, but the fast virus-spread,
which eliminates all tumor cells, cannot be applied to solid tumors. As slow virus-spread is applied, solid
tumors are expected to be controlled but complicated dynamical behaviors appear. In this paper we
investigate bifurcations of equilibria in the oncolytic virus dynamics model with exponential growth of
tumor cells and slow virus-spread. We find conditions of parameters for saddle-node bifurcation, Hopf
bifurcation and Bogdanov–Takens bifurcation. Those conditions give thresholds for slow virus-spread to
control the population of tumor cells within an appropriate range.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer therapy by means of oncolytic viruses such as adenoviruses, vesicular stomatitis virus and Newcastle disease virus has attracted
the attention of clinicians for a long time (see e.g. Aghi and Martuza, 2005; Bell, 2007; Davis and Fang, 2005; Lorence et al., 2003;
McCormick, 2005). The idea behind this treatment is to infect a tumor with an engineered virus which specifically infects and kill tumor
cells with potential to spread throughout the tumor. The aim is that the virus drives the tumor to extinct and then goes to extinct itself. In
recent decade, the dynamics of oncolytic viruses was modeled by systems of differential equations (see e.g. Bajzer et al., 2008; Karev et al.,
2006; Komarova and Wodarz, 2010; Pilisa, 2009; Wodarz, 2001), one of which is the following

_x ¼ xFðx; yÞ�byGðx; yÞ;
_y ¼ byGðx; yÞ�ay

(
ð1:1Þ

in R2
þ , the closure of the first quadrant R2

þ≔fðx; yÞAR2 : x40; y40g. This system was adopted from the general predator–prey type
system by Komarova and Wodarz (2010) to describe the growth of tumor cells and infected tumor cells. In system (1.1), x and y represent
the population of uninfected tumor cells and the population of infected tumor cells respectively, a is the death rate of infected tumor cells,
and b the viral replication rate. Moreover, F reflects cancer growth and death processes, which was modeled in (Adam and Bellomo, 1997)
in the forms Feðx; yÞ≔1 for exponential growth, Fℓðx; yÞ≔η=ðηþxþyÞ for linear growth, Flgðx; yÞ≔1�ðxþyÞ=W for logistic growth, and
Fgmðx; yÞ≔flog fðWþηÞ=ηgg�1 log fðWþηÞ=ðxþyþηÞg for gompertzian growth. The most important thing is G, the rate of infection of tumor
cells by the virus, which can be chosen in either fast spread mode or slow spread mode (Komarova and Wodarz, 2010). As indicated in
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Komarova and Wodarz (2010, p.533), the fast mode and slow mode are distinguished by Gðx; ~yðxÞÞ,where ~yðxÞ is the explicit expression of
the curve Γ : xFðx; yÞ ¼ ay in R2

þ on which all equilibria lie. More concretely the fast spread mode and the slow spread mode are defined by
the limits limx-1Gðx; ~yðxÞÞ40 and limx-1Gðx; ~yðxÞÞ ¼ 0 respectively. For example, G0ðx; yÞ≔xð1þε1Þð1þε2Þ=ðxþε1Þðyþε2Þ presents a slow
spread but G1ðx; yÞ≔x=ðxþyþεÞ presents a fast spread (see Komarova and Wodarz, 2010).

It is of special interest to consider the slow virus-spread treatment because the fast virus-spread is mainly effective to non-solid tumors
such as leukemia and lymphoma, which are resulted from cancers of the blood. Most tumors such as breast cancer, prostate cancer, lung
cancer, liver cancer, pancreatic cancer, and melanoma are solid ones. In addition, one pays attention to the form of an exponential growth
because it appears in the early stage of tumor growth. Usually, it is more efficient to apply a slow virus-spread treatment in the early stage.
As slow virus-spread is applied, one wants a pursuit of a control on the population of tumor cells, that is to find a treatment scheme
making the tumor cells stable in a range of numbers. This requires to analyze the complicated dynamics of tumor cells. In 2010, Komarova
and Wodarz (2010) investigated system (1.1) with F ¼ Feðx; yÞ and G¼ G0ðx; yÞ as chosen as above, i.e., the system

dx
dt

¼ x�by
xð1þε1Þð1þε2Þ
ðxþε1Þðyþε2Þ

;

dy
dt

¼ by
xð1þε1Þð1þε2Þ
ðxþε1Þðyþε2Þ

�ay;

8>>><
>>>:

ð1:2Þ

where ε1 and ε2 are arbitrary positive constants such that the virus spread term G satisfies the necessary biological requirements listed in
(Komarova and Wodarz, 2010, p. 532). With rescaling x↦ε1x, y↦ε2y and t↦ð1þxÞðyþ1Þt, system (1.2) is simplified as

dx
dt

¼ xðxþ1Þðyþ1Þ�βxy≔Pðx; yÞ;
dy
dt

¼ βγxy�αyðxþ1Þðyþ1Þ≔Q ðx; yÞ;

8>><
>>: ð1:3Þ

where

α¼ a; β¼ bð1þε1Þð1þε2Þ=ε1 and γ ¼ ε1=ε2: ð1:4Þ

Here x(t), y(t) are considered in the closure R2
þ and α, β, γ are all positive coefficients. It is shown in Komarova and Wodarz (2010) that

system (1.2) has exact one equilibrium O : ð0;0Þ as 0obobc≔ð ffiffiffiffiffiffiffi
aε2

p þ ffiffiffiffiffi
ε1

p Þ2=fð1þε1Þð1þε2Þg, two equilibria O : ð0;0Þ and
B0 : ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aε2=ε1

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1=ðaε2Þ

p
Þ as b¼ bc , and three equilibria O : ð0;0Þ, B� : ðx� ; y� Þ and Bþ : ðxþ ; yþ Þ as b4bc , where y7 ¼ ε1x7 =ðaε2Þ and

x7 ¼ ε2
2ε1

� aþε1�bð1þε1Þð1þε2Þ
ε2

� �
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþε1�bð1þε1Þð1þε2Þ

ε2

� �2

�4aε1
ε2

s0
@

1
A: ð1:5Þ

Correspondingly, system (1.3) has exact one equilibrium O : ð0;0Þ as 0oβoβc≔ð ffiffiffi
α

p þ ffiffiffi
γ

p Þ2=γ, two equilibria O : ð0;0Þ and E0 : ð
ffiffiffiffiffiffiffiffi
α=γ

p
;

ffiffiffiffiffiffiffiffi
γ=α

p
Þ

Table 1
Properties of equilibrium B� .

Possibility of a, b, ε1 and ε2 B�

ao1 ε1rε2
b4

ð ffiffiffiffiffiffiffi
aε2

p þ ffiffiffiffiffi
ε1

p Þ2
ð1þε1Þð1þε2Þ

Unstable node or unstable focus

ε2oε1o ε2
a ð ffiffiffiffiffiffiffi

aε2
p þ ffiffiffiffiffi

ε1
p Þ2

ð1þε1Þð1þε2Þ
obo ðaε2�ε1Þ2

ða�1Þð1þε1Þð1þε2Þðε2�ε1Þ
Unstable node or unstable focus

b¼ ðaε2�ε1Þ2
ða�1Þð1þε1Þð1þε2Þðε2�ε1Þ

Center type

b4
ðaε2�ε1Þ2

ða�1Þð1þε1Þð1þε2Þðε2�ε1Þ
Stable node or stable focus

ε1Z
ε2
a b4

ð ffiffiffiffiffiffiffi
aε2

p þ ffiffiffiffiffi
ε1

p Þ2
ð1þε1Þð1þε2Þ

Stable node or stable focus

a¼1 ε1oε2
b4

ð ffiffiffiffiffi
ε1

p þ ffiffiffiffiffi
ε2

p Þ2
ð1þε1Þð1þε2Þ

Unstable node or unstable focus

ε1 ¼ ε2 b4
4ε2

ð1þε2Þ2
Center type

ε14ε2
b4

ð ffiffiffiffiffi
ε1

p þ ffiffiffiffiffi
ε2

p Þ2
ð1þε1Þð1þε2Þ

Stable node or stable focus

a41 ε1r
ε2
a b4

ð ffiffiffiffiffiffiffi
aε2

p þ ffiffiffiffiffi
ε1

p Þ2
ð1þε1Þð1þε2Þ

Unstable node or unstable focus

ε2
a

oε1oε2 ð ffiffiffiffiffiffiffi
aε2

p þ ffiffiffiffiffi
ε1

p Þ2
ð1þε1Þð1þε2Þ

obo ðaε2�ε1Þ2
ða�1Þð1þε1Þð1þε2Þðε2�ε1Þ

Stable node or stable focus

b¼ ðaε2�ε1Þ2
ða�1Þð1þε1Þð1þε2Þðε2�ε1Þ

Center type

b4
ðaε2�ε1Þ2

ða�1Þð1þε1Þð1þε2Þðε2�ε1Þ
Unstable node or unstable focus

ε1Zε2
b4

ð ffiffiffiffiffiffiffi
aε2

p þ ffiffiffiffiffi
ε1

p Þ2
ð1þε1Þð1þε2Þ

Stable node or stable focus
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