Journal of Theoretical Biology 367 (2015) 230-245

Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

x Journal of

Theoretical
'Biobgy o

b~ 4

&

On time scale invariance of random walks in confined space

Daniel Bearup **, Sergei Petrovskii "

@ CrossMark

2 Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26111 Oldenburg, Germany

b Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK

HIGHLIGHTS

e We consider the effects of time scale on Brownian random walks in confined space.
e For reflective boundaries the drift and diffusion rates are usually unaffected.
e For other impenetrable boundaries these properties vary with the time step.

e Similar effects are observed for absorbing boundaries.

ARTICLE INFO ABSTRACT

Article history:

Received 30 June 2014

Received in revised form

21 October 2014

Accepted 21 November 2014
Available online 4 December 2014

Keywords:

Individual movement
Boundary effect

Self similarity
Brownian motion
Diffusion

behaviour.

Animal movement is often modelled on an individual level using simulated random walks. In such
applications it is preferable that the properties of these random walks remain consistent when the
choice of time is changed (time scale invariance). While this property is well understood in unbounded
space, it has not been studied in detail for random walks in a confined domain. In this work we
undertake an investigation of time scale invariance of the drift and diffusion rates of Brownian random
walks subject to one of four simple boundary conditions. We find that time scale invariance is lost
when the boundary condition is non-conservative, that is when movement (or individuals) is
discarded due to boundary encounters. Where possible analytical results are used to describe the
limits of the time scaling process, numerical results are then used to characterise the intermediate

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Movement is always present in wild populations. Even species
which are usually individually immobile, such as plants or sessile
animals, have some means of dispersal in space, i.e. seed dispersal
or a motile life stage. Naturally this movement can have significant
effects on population dynamics, particularly if movement mediates
interactions, such as predation, between species (Murray, 1989;
Turchin, 1998; Mendez et al., 2014; Sheratt et al., 1995; Adamson
and Morozov, 2012). Consequently it is beneficial, where possible,
to incorporate the effects of movement into mathematical models
of populations.

One approach to modelling movement attempts to account for
all stimuli that may influence an individual's behaviour (Grimm
and Railsback, 2005; Moorcroft and Barnett, 2008). These models
can be quite complex and may require detailed information about
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the individual's environment (Preisler et al., 2013). As such they
are typically used to simulate individual movement tracks rather
than population level behaviour. For studies of whole populations
(consisting of large numbers of individuals) simpler approaches,
describing average rather than specific behaviour i.e. mean field
models, are usually needed. The diffusion equation is perhaps the
most commonly used mean field model (Turchin, 1998; Berg, 1983).

The microscopic theory connecting these approaches is the
framework of random walks (Codling et al., 2008); for example,
the diffusion equation describes the behaviour of the simplest
random walk, Brownian motion. By approximating movement by
random walks, with known parameters, it is possible to extract the
generic effects of movement. For example, a dispersal rate for the
population can be derived and used to parameterise diffusion-
reaction equations to model spatiotemporal population dynamics
(Mendez et al., 2014; Turchin and Thoeny, 1993). Optimal foraging
patterns and encounter rates, with predators or traps, (even in
relatively complex environments) have been studied in a similar
way (Viswanathan et al., 1999; Bartumeus et al., 2005; Petrovskii
et al., 2012; Potts et al., 2014).
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Many random walk models are implemented in discrete time,
that is each step takes a finite, non-zero period of time, At. It is
clearly preferable that the generic properties of the random walk
be insensitive to this parameter (scale invariance). Random walks
generated by stable distributions have this property in unbounded
space (Sornette, 2003). However, despite the ubiquity of bound-
aries in nature, the effects of time scaling in confined space have
not been extensively studied. The only previous study on this
subject that we are aware of, by Hernandez Garcia et al. (1987),
considers a model system which is not related to animal move-
ment. It demonstrates that random walks with identical charac-
teristics in unbounded space behave measurably differently in a
bounded space.

In this paper we undertake a more detailed study of this
phenomenon using the drift and diffusion rates of individuals
performing a Brownian walk in a bounded space. Section 2
introduces a model framework for individual movement in a
bounded space and particularly focuses on how boundaries may
be implemented. In a one dimensional system the effects of these
boundaries can be described analytically in certain limiting cases.
This is discussed in detail in Section 3. Intermediate cases are
investigated using numerical simulations. These results are
extended to more realistic two dimensional geometries in
Section 4. Finally Section 5 summarises these results and discusses
their wider relevance.

2. Random walks in a bounded space

The size of individuals, relative to the typical dispersal dis-
tances, is usually negligible. Consequently we treat an individual's
position as a point, R(t)=(x,y), and its movement path as a
continuous, curvilinear, track in space. However it is relatively
rare for individuals to be monitored in anything approaching real
time. Instead an individual's location may be recorded on an
hourly, or even daily, basis depending on the species traits. Thus
the true path is approximated by a series of line segments ({Ar;}),
Fig. 1, each representing displacement in a fixed time period, At
(Turchin, 1998). Typically the movement represented by each line
segment arises from responses to a multitude of stimuli. Conse-
quently, even if these responses are deterministic, the combined
response is likely to be complicated. It is for problems of this type,
replacing a complicated deterministic description with a simpler
probabilistic one, that statistical mechanics was developed
(Balescu, 1975). Thus we simulate movement paths, at a given
sampling rate, as random walks by drawing these line segments
from a suitably parameterised probability distribution. We will
consider Brownian random walks, generated by line segments
with normally distributed components, i.e. in two dimensions
Ar = (Ax, Ay) with Ax, Ay ~ N(0, 62).

In this work we are particularly interested in the average
movement behaviour of a population of identical individuals

R(t+At) = R(t)+Ar |

Fig. 1. Discretisation of a continuous path using line segments. An individual's
position, denoted by R(t), changes, over a period At, by a line segment, Ar.

performing the same movement pattern. This is typically charac-
terised by two processes: drift, a movement biased in a particular
direction, and diffusion, the spread of the population in space, cf.
Codling et al. (2008). The rates of these processes can be calculated
from the mean and mean square displacements of the individuals
as follows. The mean displacement is given by

(AR(t)) = \/H3+43, M

where p, and p, are the mean displacements in the x and y
directions respectively. That is

fo = / | (x—x0)g(x.y) dx dy. @)
0

where g(x,y) is the position probability density function (pdf) of
the population and €2 is the (two dimensional) domain in which
the individuals move (u, is defined analogously). The mean square
displacement is given by

AR2(t) // < (x—X0)>+(—Yo) )g(x,y)dxdy. 3

The drift rate, A, and the diffusion coefficient, D, in a two
dimensional space are related to these properties as follows
(Einstein, 1905):

(AR(t) ) (AR’()—(AR()?

A=—— D= at ' “@

In unbounded space a Brownian random walk has no drift,
A=0, and second moment given by (AR?(t))=2nc?, where
n=t/At and ¢ is the variance of the underlying distribution.
Thus the diffusion coefficient is

62
D:m. (5)
This relationship allows us to rescale the random walk while
preserving D. For an alternative time scale, At =aAt, we obtain
the same dispersal rate by taking &> = ac?.

However, when an individual encounters a boundary, its move-
ment is modified by that encounter, see Fig. 2. For instance, a
barrier which the individual cannot cross, requires that the
individual remain within the domain. This interaction clearly
reduces the total displacement of that individual and thus its
effective speed. Alternatively, encountering a trap will cause the
individual to be removed from the population. In this case its
movement should no longer contribute to the overall dispersal of
the population.

Moreover, the impact of these boundaries may not remain the
same under the time-scaling process outlined above. For a rela-
tively coarse time scale, with associated relatively large o2, each
encounter with a boundary must necessarily introduce a
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Fig. 2. Sketch of the effect of encountering a boundary. A line segment which
crosses the boundary is split into two segments, movement prior to the boundary
encounter and movement after this event. The bold arrows show possible move-
ment directions after the encounter.
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