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HIGHLIGHTS

e Two mathematical models simulate the growth dynamics of cells in different states.
e These models predict variations in growth as a function of intrinsic heterogeneity.

e Duration and variation of the cell-cycle dramatically impact cancer-cell dynamics.

e The stochastic ABM can be approximated by efficient IDEs for high cell densities.
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ABSTRACT

Intratumoral heterogeneity has been found to be a major cause of drug resistance. Cell-to-cell variation
increases as a result of cancer-related alterations, which are acquired by stochastic events and further
induced by environmental signals. However, most cellular mechanisms include natural fluctuations that
are closely regulated, and thus lead to asynchronization of the cells, which causes intrinsic heterogeneity
in a given population. Here, we derive two novel mathematical models, a stochastic agent-based model
and an integro-differential equation model, each of which describes the growth of cancer cells as a
dynamic transition between proliferative and quiescent states. These models are designed to predict
variations in growth as a function of the intrinsic heterogeneity emerging from the durations of the cell-
cycle and apoptosis, and also include cellular density dependencies. By examining the role all parameters
play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to
parameter values, we show that the cell-cycle length has the most significant effect on the growth
dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the
more computationally efficient integro-differential equations when the number of cells is large. This
essential step in cancer growth modeling will allow us to revisit the mechanisms of multidrug resistance
by examining spatiotemporal differences of cell growth while administering a drug among the different
sub-populations in a single tumor, as well as the evolution of those mechanisms as a function of the
resistance level.

Published by Elsevier Ltd.

1. Introduction

1.1. Induced Heterogeneity

alterations that may be acquired through stochastic processes and
induced by environmental signals, such as metabolic stress, inflam-
matory microenvironments, immune responses, and/or therapy.
Combinations of these signals produce intratumoral heterogeneity.

The development of a tumor is a complex evolutionary process
that involves perturbations in many essential cellular mechanisms.
Spatiotemporal cellular dynamics include various types of hallmark
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Many primary human tumors have been discovered to contain
genetically and phenotypically distinct cellular subpopulations with
different growth rates. This intratumoral heterogeneity has further
been found to be a major contributor to drug resistance (Saunders
et al., 2012). Resistance to chemotherapy is a major impediment to
successful cancer treatment. Several central mechanisms have been
identified as contributing to resistance; however, these do not
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necessarily account for tumor dynamics (Gillet and Gottesman,
2010). It is known that most patients that are diagnosed with cancer
have already developed some level of drug resistance while the
tumor is forming. Thus after therapy, they experience a relapse,
where the disease could become intractable or even possibly
untreatable. Various theoretical and empirical studies aim to predict
the development of a tumor, mainly by assuming the existence of
abnormal events that cause cancer-related alterations (Lavi et al.,
2012). Understanding the course of malignancy and estimating
cancer growth based on tumor cell responses to microenvironmen-
tal changes as an induced dynamic process may serve to identify
new targets for therapy or methods of prevention.

1.2. Intrinsic heterogeneity

However, there is another side to this ‘equation’; one that does
not necessarily account for tumor heterogeneity that results
exclusively from cancer-related irreversible processes. Instead,
heterogeneity can arise via typical reversible biological processes
that are stochastic, yet nevertheless tightly regulated, in nature.
These natural intrinsic mechanisms add another layer of complex-
ity to a cell's capacity to integrate information, particularly in
cancer cells. One such cellular process is the cell-cycle. The cell-
cycle is one of the most studied biological processes, and has
obvious effects on cancer development, growth, and therapeutic
resistance. Eukaryotic intracellular dynamics are mediated by
many different molecular components (e.g. transcription factors,
proteins, metabolites, RNA, etc.). Each such component operates at
a different rate, often under different conditions, and responds to
many dynamic inter- and intra-cellular signals, such as pH,
temperature, and cellular density in the local environment. In
order to maintain an ordered cell-cycle mechanism that would
function consistently, despite a routinely noisy microenvironment,
variations in gene expression (Pisco et al., 2013), cell-cycle period
(Wang et al., 2010), cell size and age (Tzur et al., 2009), and cellular
death period (Messam and Pittman, 1999; Spencer et al., 2009) of
cells from the same clone must exist. Advances in methods to both
study naturally intrinsic significant variations in tumor growth
and characterize intratumoral heterogeneity would aid in deter-
mining natural fluctuations in cell growth, understanding how
tumor development is affected by these natural fluctuations,
detecting these types of tumors after treatment, and understand-
ing how induced and intrinsic mechanisms can be found.

1.3. Self-organized dynamics

Two frameworks that are commonly used to design mathematical
cancer models which predict cellular behavior are individual-based
models and continuous deterministic models. Several different
individual-based models of tumor growth have been developed
recently (see review Anderson and Quaranta, 2008). Among them
are agent-based models (ABMs). The ABM framework is a powerful
simulation method that has seen a variety of applications, including
bio-medical research (Piotrowska and Angus, 2009; Thorne et al,
2007; Zhang et al., 2009) and socio-economic modeling (Bonabeau,
2002). ABMs describe dynamic systems as collections of autonomous
decision-making individuals called agents. Each agent assesses its
state and makes decisions on the basis of a set of rules. Agents may
execute various behaviors appropriate for the system they represent.
ABMs are generally more flexible than deterministic models and may
take into account virtually any biological phenomenon. Here, we
present two mathematical approaches, the ABM and a corresponding
integro-differential (IDE) model, to predict the growth of a single
ovarian cell line, OVCAR-8, where the cells can be proliferating, dying,
or in quiescence. The novelty of our methods lies in the description of
cellular decision-making as a function of the global dynamic cell

density, with intrinsic variations of the cell-cycle and death process
lengths. Decisions concerning actions are based on how the cell
senses its environment, in a probabilistic fashion. We study the
robustness of cell growth despite noise in division and natural death
rates. The entire system dynamic results from the decisions of
individual entities that can cause transient or permanent heteroge-
neity, generate network effects, and potentially lead to significant
deviations from stochastic to deterministic predictions. We demon-
strate the existence of fluctuations in cell growth using data of
proliferation rates as a function of cellular density. This fundamental
framework of cellular growth dynamics is a necessary first step that
will allow us to work on more complex co-cultured systems based on
geometry, which includes a spatial mechanism of drug resistance that
could shed light on the spatiotemporal evolution of intratumoral
heterogeneity.

2. Agent-based model

The first model we introduce is an ABM, where each cell is
distinguished by its own state and behavior. This framework
permits a simple way to introduce an age structure into the model,
which is a main focus of this work.

2.1. Model construction

The ABM consists of three compartments of cells: proliferative
(P), apoptotic (A), and quiescent (Q). See Fig. 1 for an outline of the
transitions between compartments. Q consists of cells that are
neither dividing nor dying, and acts mainly as a reservoir for the
other two compartments. P consists of cells that are currently in
any stage of the cell-cycle. When a cell makes a transition from Q
into P, a cell-cycle length, Lp, is chosen. Lp was assumed to be a
random variable with normal distribution:

Lp ~ N (i, 6%), M

where p is the mean length of the cell-cycle, and o is the standard
deviation (Wang et al., 2010). The value of u is taken as the doubl-
ing time of OVCAR-8 cells, which is estimated to be 24.4416 h (see
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Fig. 1. Model dynamics. Diagram of transitions between the three cellular
compartments in the ABM. Q denotes the quiescent compartment with Ny(t) cells
at time t, P denotes the proliferation compartment with Ny(t) cells at time ¢, and A
denotes the apoptosis compartment with N,(t) cells at time t. Note that Ng(t), Np(t),
and Ng(t) are all stochastic processes. The explicit transition rates between the
compartments are shown in solid lines, and are labeled as a;(t), aq, (t), and aq,(t).
The implicit transition rates, due to the completion of cellular cycles, are shown in
dotted lines, and have no closed-form expression. For example, £p_, o corresponds
to the rate of cell-cycle completion. The line originating from compartment A
indicates cells that are removed from the simulation.



Download English Version:

https://daneshyari.com/en/article/6370171

Download Persian Version:

https://daneshyari.com/article/6370171

Daneshyari.com


https://daneshyari.com/en/article/6370171
https://daneshyari.com/article/6370171
https://daneshyari.com

