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a b s t r a c t

Turing's diffusion-driven instability for the standard two species reaction–diffusion system is only
achievable under well-known and rather restrictive conditions on both the diffusion rates and the
kinetic parameters, which necessitates the pairing of a self-activator with a self-inhibitor. In this study
we generalize the standard two-species model by considering the case where the reactants can bind to
an immobile substrate, for instance extra-cellular matrix, and investigate the influence of this dynamics
on Turing's diffusion-driven instability. Such systems have been previously studied on the grounds that
binding of the self-activator to a substrate may effectively reduce its diffusion rate and thus induce a
Turing instability for species with equal diffusion coefficients, as originally demonstrated by Lengyel and
Epstein (1992) under the assumption that the bound state dynamics occurs on a fast timescale. We,
however, analyse the full system without any separation of timescales and demonstrate that the full
system also allows a relaxation of the standard constraints on the reaction kinetics for the Turing
instability, increasing the type of interactions that could give rise to spatial patterning. In particular, we
show that two self-activators can undertake a diffusively driven instability in the presence of a binding
immobile substrate, highlighting that the interactions required of a putative biological Turing instability
need not be associated with a self-activator–self-inhibitor morphogen pair.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Alan Turing (1952) wrote his seminal paper on biological pattern
formation, in which he showed that a system of chemicals (which
he termed morphogens) undergoing reaction and diffusion can lead
to the counter-intuitive phenomenon of diffusion-driven spatial
heterogeneity. That is, a spatially uniform steady state, stable in the
absence of diffusion, could be driven unstable by diffusion, evolving
into a spatially heterogeneous state, a pattern. Furthermore, with
non-dimensionalisation of the system equations to a fixed size
domain, the diffusion coefficients acquire a domain-size depen-
dence and hence one can deduce that Turing's instability will
induce symmetry breaking from fluctuations as a domain adiaba-
tically grows beyond a critical size. Consequently, this instability can

drive the spontaneous formation of pattern, triggered simply by
domain growth rather than any exquisite long-range cellular com-
munication, and Turing proposed that this mechanism could induce
a pre-pattern for cell differentiation in early developmental biology.
However, this hypothesis laid largely ignored until the seminal
paper of Gierer and Meinhardt (1972) 20 years later, which analysed
the two chemical cases in detail. This demonstrated two ways in
which pattern could arise, one of which for instance is referred to as
“short-range-activation, long-range-inhibition”. Further, one can
readily demonstrate that the Turing instability in general for the
two-species system, in the absence of a binding substrate, necessi-
tates a short range morphogen which is a self-activator, i.e. it
upregulates its own production,1 interacting with a long range
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morphogen which is a self-inhibitor and thus analogously down-
regulates its own production (Murray, 2002).

Thus, implicit in the latter constraint is one of the key condi-
tions for diffusion-driven-instability (DDI) with two chemical
species, namely that their diffusion coefficients have to be differ-
ent. While in principle they can be arbitrarily close to each other,
this requires extensive parameter fine tuning for a Turing instabil-
ity to still exist (Pearson and Horsthemke, 1989; Baker et al., 2008)
and, in practice, interacting chemical molecules will typically have
very similar diffusion coefficients. This led to great difficulty in
identifying real Turing structures, but in 1991 they were even-
tually determined in a chemical system by Castets et al. (1990) and
Ouyang and Swinney (1991) due to a substrate, introduced as a
marker, binding to one of the chemicals and reducing its diffusion
coefficient sufficiently. Furthermore, such binding dynamics have
been implicated with diffusible gene-products such as fibroblast
growth factor (FGF) indicating that this mechanism for inducing
differential transport may potentially be active in biological
systems exhibiting long range self-organisation (Miura, 2007).

We note that binding with an immobile substrate is not the
only mechanism that has been highlighted as providing a means of
circumventing the constraint of equal diffusion coefficients in
Turing's mechanism. For finite amplitude perturbations, it is also
possible for spatial patterns to arise with equal diffusion coeffi-
cients (Vastano et al., 1987). However, this is outside the scope of
simple linear stability analysis and, more importantly, it is also
outside the scope of fluctuation induced instability from an
essentially homogeneous steady state and thus it cannot explain
a core feature of Turing's instability, namely symmetry breaking
from a near perfect spatial homogeneity, and is thus not consid-
ered further here. A second manner of evading the constraint of
equal diffusion coefficients concerns receptor dynamics. In parti-
cular, a focussed model of hair follicle patterning (Klika et al.,
2012) has also revealed that patterning can occur with equal
diffusion coefficients. Coupling receptor dynamics to Turing's
mechanism results in a system of coupled ordinary and partial
differential equations, as also studied by Marciniak-Czochra in the
context of hydra self-organisation (e.g. Marciniak-Czochra, 2003),
which presents a mathematical framework with rich behaviour.
Below, we do not consider the complexities associated with
genuine receptor dynamics (Klika et al., 2012; Marciniak-
Czochra, 2003), but instead focus on the influence of simple
reversible binding with an immobile substrate such as extra-
cellular matrix, representing a particularly simple class of coupled
ordinary and partial differential equations with biological motiva-
tion that generalise the standard Turing model.

While this standard Turing model has many applications to pattern
formation in biology (see, for example, the books by Meinhardt, 1982;
Meinhardt et al., 2003; Murray, 2002) and is highly suggestive due to
numerous cases of qualitative agreement with observation (e.g.
Nakamasu et al., 2009; Yamaguchi et al., 2007), there is still a lot of
scepticism in the biological community because the identification of
Turing morphogens remains elusive. Nonetheless, there are a number
of recent studies that have begun tomove towards identifying possible
biological components (Sick et al., 2006; Garfinkel et al., 2004;
Solnica-Krezel, 2003; Chen and Schier, 2002; Hamadai, 2012; Muller
et al., 2012) and even suggesting that the self-activator–self-inhibitor
pair may actually be cells themselves (Yamaguchi et al., 2007;
Nakamasu et al., 2009).

In this paper we first briefly revisit the original ideas of the
CIMA chemical reaction used to experimentally investigate Tur-
ing's instability and, in particular, the theoretical study by Lengyel
and Epstein, (1991, 1992), which was motivated by the immobile
substrate in the CIMA experiments of Castets et al. (1990) and
Ouyang and Swinney (1991). Lengyel and Epstein considered the
equations for a Turing pair, in which one of the chemicals (the self-

activator) reversibly binds to an immobile substrate and demon-
strated this can be reduced using a quasi-steady approximation to
a two species system with an altered effective diffusion coefficient
ratio that facilities the induction of a DDI even if the two
morphogens have an equal diffusion coefficient in the absence of
reversibly binding to the immobile substrate. Miura presented an
analogous approximation, though with piecewise continuous
levels of extra-cellular matrix (ECM), for the interpretation of his
experimental results (Miura, 2007), whilst Pearson (Pearson, 1992)
extended Lengyel and Epstein's analysis to conditions outside the
regime of the quasi-steady state approximation. All the theoretical
aspects of these studies were focussed on the constraints for the
morphogen diffusion coefficients associated with a DDI, though
Pearson additionally assessed the relevance of such models for
continuously fed reactors in observations of CIMA Turing
instabilities.

However, despite the prevalence of the quasi-steady state
approximation in these previous studies, there is no a priori
reason to expect this approximation to be universal. For example,
fluorescence recovery after photobleaching (FRAP) highlights that
VEGF-ECM binding and unbinding occurs on the order of magni-
tude of 1000 s (Köhn-Luque et al., 2013). In contrast fast develop-
mental events can occur on the timescale of only a few hours as
illustrated by Zebrafish gene expression and fate maps for Nodal, a
common putative morphogen, which demonstrate that Nodal
specifies position-dependent cell fates in Zebrafish before gastru-
lation, i.e. under 5.25 h from fertilisation at standard conditions
(Schier, 2003; Kimmel et al., 1995). Hence the timescale of fast
developmental patterning, which must be significantly longer
than the kinetic timescales, still need not be multiple orders
higher than the timescale of ECM interaction between a diffusible
signal and the extra-cellular matrix. In turn, this means that
regions of parameter space where the binding-unbinding reaction
rates are the same order as other kinetic interactions should not be
excluded from studies. Furthermore, there is also no a priori
reason to expect that any putative pair of Turing morphogens
which interact with the ECM are restricted such that only one of
the pair interacts with the ECM.

Hence, we revisit the full system for a Turing pair in the presence
of reversible morphogen binding to an immobile substrate, without
any quasi-steady approximations, and also briefly consider the
system where both diffusing morphogens reversibly bind to the
immobile substrate. This modelling framework will reduce to the
standard model in the limit of negligible interactions with the
immobile substrate so, in particular, our objective is to assess
whether the introduction of a mobile substrate allows a relaxation
of the conditions for a Turing instability. However, our main focus is
fundamentally different from the previous work that clearly demon-
strated that the 2-species requirement of equal diffusion coefficients
needs no longer apply in the presence of reversible binding. In
particular, there has been no study of whether it is still necessary to
enforce other characteristics of the 2-species DDI, for instance the
need to pair a self-activator with a self-inhibitor. Thus, rather than
considering diffusive aspects of the diffusion-driven instability, we
explore how the presence of a DDI constrains the kinetics of
interacting morphogens given the presence of reversible binding to
an immobile substrate. Furthermore, the diffusible gene-products
Nodal and Lefty are the subject of intensive investigation concerning
whether they fulfil the criteria of a Turing morphogen pair (e.g.
Solnica-Krezel, 2003; Chen and Schier, 2002; Hamadai, 2012; Muller
et al., 2012). Thus, more generally we are investigating whether one
should refine or generalise the interactions that Nodal and Lefty, or
indeed any prospective Turing pair, undertake in order to verify, at
the molecular level, that the conditions for Turing's mechanism are
satisfied given at least one of the morphogens undergoes reversible
binding with an immobile substrate.
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