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H I G H L I G H T S

� Show a new, concise, derivation of Yule's equilibrium distribution.
� Derive the species–area relationship based on the evolution of species through mutations.
� Calculate the exponent of the species–area relationship for four different data sets.
� Confirm that the exponent term, based on mutation rates, agrees with previously observed values.
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a b s t r a c t

The well-known species–area relationship is one of many scaling laws, or allometries, in ecology
and biology that have received much attention over the years. We present a new derivation of this
relationship based on Yule's theory of evolution of species. Using definitions of mutation rates, our
analysis yields species–area exponents that are in close agreement with previously observed values.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The species–area relationship (SAR)

S¼ cAz; ð1Þ
dates back to at least 1921 when Arrhenius (1921) proposed Eq. (1)
as an empirical formula for the number of species S of a given
taxonomic group (or genus) found in a region of area A. Alternative
SARS and their derivations, which are often based on assumed
underlying species-abundance distributions (SADs), have been
considered and debated over the years (May, 1975; May and
Stumpf, 2000; McGuinness, 1984; Chisholm, 2007). While there
has been no general consensus on the range of validity of
particular SARs (for varying A), recent empirical and theoretical
studies by Harte et al. (2009), O'Dwyer and Green (2010) and
Storch et al. (2012) strongly suggest that Eq. (1) is not valid for
‘small A’, but that in certain situations, may be valid asymptotically

for larger values of A. Our purpose here is not to discuss or
comment on the large body of work that has been published on
this problem (see May, 1975; May and Stumpf, 2000; McGuinness,
1984; Chisholm, 2007; Harte et al., 2009; O'Dwyer and Green,
2010; Storch et al., 2012 and references quoted therein), but rather
to present a new derivation of Eq. (1) which is valid asymptotically
for large A.

Our derivation of Eq. (1) is based on ideas published over
ninety years ago by Yule (1925) on the evolution of species
through specific and generic mutations within and between
genera of species. In the following section we present a stochastic
dynamical systems model based on Yule's original ideas. In
Section 3 we show that the species–area relation (1) follows from
the asymptotic form of Yule's equilibrium distribution for a large
number of species in a genus. Moreover, our asymptotic derivation
of (1) provides an explicit expression for the exponent z in
Eq. (1) in terms of Yule's species and generic mutation rates.
In Section 4 we present some case studies as examples, showing
close agreement between our formulae for z and the previous
empirical studies based on Eq. (1). Our results are summarised and
discussed in the final section.
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2. The Yule distribution

In his original work Yule (1925) proposed evolution of species
and genera through two kinds of mutations which he described as
follows:

� Within any species, in any time interval, a ‘specific mutation’
can occur yielding a new species, but within the same genus as
the parent.

� Within any genus, in any time interval, a ‘generic mutation’ can
occur yielding a new species so different from the parent that it
is placed in a new genus.

We assume (with Yule) that the rate s of specific mutations is a
constant, and the same for all species within a genus; and that the
rate g of generic mutations is a constant and same for all genera.
Notice that at any time, the number of a species within a genera
increases due to both s and the number of species within the
genera. That is, the rich get richer (also known as ‘preferential
attachment’).

Yule (1925) was at pains to point out that these assumptions
are simplistic and were designed solely to elicit quantitative
comparisons with well-known facts. He provides the following
example to demonstrate the last of his simplifying assumptions: if
A, B, C, and D are the existing genera, and one of them throws a
generic mutation, it is assumed that this will represent a new
genus E. That is, the possibility that the new species may be
classed under an existing genera is ignored. Combine this with the
absence of a death process, and it becomes clear that the number
of genera with few species could easily be overestimated. This
overestimation has recently been addressed by the Birth–Death-
Mutation (BDM) Process (Maruvka et al., 2011).

Despite these assumptions, we will see in Section 4 that Yule's
comparisons with Willis' data proved to be successful. Not
surprisingly, Yule's analysis (in the early 1920s) was long and
complicated. Our main purpose in this section is to present a
simple dynamical systems model for

PnðtÞ ¼ the probability that the genus has n species at time t: ð2Þ

and to show that Yule's (equilibrium) distribution is a steady state
solution of this system.

Consider first the case n¼1. In continuous time it follows from
Yule's assumptions that

dP1ðtÞ
dt

¼ g�ðsþgÞP1ðtÞ; ð3Þ

where the first (input) term on the right-hand side of (3)
represents a generic mutation from another genus, and the second
term represents losses from the single species in the (new) genus
through specific and generic mutations.

Similarly, for an established genus with at least two species, it
follows from Yule's assumptions that

dPnðtÞ
dt

¼ ðn�1ÞsPn�1ðtÞ�ðnsþgÞPnðtÞ; n¼ 2;3;…: ð4Þ

In Eq. (4) the first term arises from the n�1 possible specific
mutations from n�1 species in the genus, and the second term
represents losses from n species in the genus due to n specific
mutations, and a constant loss rate g due to generic mutations.

There are of course many possible dynamical models for Pn(t).
We again note that Yule's scheme ignores death, and therefore
extinction. As a consequence, and as mentioned by Yule (1925,
p.38), ‘on our assumptions, the mean size of a genus after infinite
time must itself be infinite’. Extinction could of course be included
in our system, by adding appropriate Pnþ1ðtÞ terms to the right-
hand side of (4) for example. We will return to these issues in the

final section. The important point to stress here is that Eqs. (3) and
(4) although simplistic are biologically reasonable and logically
consistent in the sense that on summation of Eqs. (3) and (4) we
deduce that

d
dt

∑
1

n ¼ 1
PnðtÞ

� �
¼ g 1� ∑

1

n ¼ 1
PnðtÞ

� �
; ð5Þ

as required by conservation of probabilities, i.e., the initial condi-
tion

∑
1

n ¼ 1
Pnð0Þ ¼ 1 implies ∑

1

n ¼ 1
PnðtÞ ¼ 1;

for all t40.
In the Appendix we present an exact solution of Eqs. (3) and (4)

and show that in the limit t-1 Pn(t) approaches a globally stable
equilibrium given by steady-state solution Pn

n obtained by setting
the left hand sides of (3) and (4) to zero, i.e.,

Pn

1 ¼
g

sþg
¼ ð1þσÞ�1; ð6Þ

and

ðnσþ1ÞPn

n ¼ ðn�1ÞσPn

n�1; n¼ 2;3;…: ð7Þ

where

σ ¼ s
g
; ð8Þ

is the ratio of the specific and generic mutation rates which we
assume henceforth (with Yule) to be larger than unity.

Iterating Eq. (7) we deduce (as shown in the Appendix) that

Pn

n ¼
ΓðnÞΓð1þ1=σÞ
σΓðnþ1þ1=σÞ; n¼ 1;2;…; ð9Þ

where ΓðkÞ is the gamma function. Using Stirling's formula for
ΓðkÞwhen k is large, we arrive at the asymptotic form (as shown in
the Appendix)

Pn

n �
1
σ
Γ 1þ1

σ

� �
n�ð1þ1=σÞ as n-1: ð10Þ

The distribution Pn

n equation (9) was obtained by Yule in a rather
lengthy and complicated derivation. This is not surprising since his
work predated developments in stochastic processes and dynami-
cal systems theory. His notion of equilibriumwas also at odds with
modern interpretations in terms of steady states. These short-
comings were in fact pointed out by Simon (1955) some thirty
years after Yule's paper. Simon re-derived Yule's results, and
Eqs. (9) and (10) in particular, in a more general and contemporary
setting with interesting applications to word frequencies, city
sizes, income distributions and frequencies of scientific publica-
tions. Simon (1955) correctly referred to (9) as the (equilibrium)
Yule distribution, although that citation has been largely forgotten
in recent times.

We note in passing that although the Pn

n, from Eqs. (6) and (7),
sum to unity as required, there is no reason for the asymptotic
form values (10) to do likewise (see the Appendix). Nevertheless,
the Yule distribution has some unusual and even ‘paradoxical’
properties (as stated by Yule, 1925, p. 38). In particular it follows
from (9) and (10) that the (equilibrium) mean number of species in
a genus, obtained by multiplying Pn

n, Eq. (9), by n and summing on
n from 1 to 1, diverges when σ41 by virtue of the asymptotic
form (10) for the tail distribution Pn

n.
In the following section we show that the asymptotic form of

Yule's distribution (10) can be used to derive the species–area
relationship (1) (for large A) with an explicit expression for the
exponent z in terms of Yule's parameter σ defined in (8).
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