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HIGHLIGHTS

e We introduce a new population dynamics model for mutualistic communities.

e The new model preserves the original logistic formulation.

e We perform an analytical stability analysis to study the model behavior.

e We perform numerical simulations to test the model behavior.

e The model shows as much richness or even more than other mutualistic models.
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ABSTRACT

Mutualistic communities have an internal structure that makes them resilient to external perturbations.
Late research has focused on their stability and the topology of the relations between the different
organisms to explain the reasons of the system robustness. Much less attention has been invested in
analyzing the systems dynamics. The main population models in use are modifications of the r—K
formulation of logistic equation with additional terms to account for the benefits produced by the
interspecific interactions. These models have shortcomings as the so-called r—K formulation diverges
under some conditions. In this work, we introduce a model for population dynamics under mutualism
that preserves the original logistic formulation. It is mathematically simpler than the widely used type Il
models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We
perform an analytical stability analysis and numerical simulations to study the model behavior in
general interaction scenarios including tests of the resilience of its dynamics under external perturba-
tions. Despite its simplicity, our results indicate that the model dynamics shows an important richness
that can be used to gain further insights in the dynamics of mutualistic communities.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

determining species diversity in an ecosystem are under a very
active scrutiny by an interdisciplinary scientific community

Despite its long history, there are still several open issues in the
research of ecological population dynamics. Some of these ques-
tions were highlighted in the 125th anniversary issue of the
journal Science (Kennedy and Norman, 2005; Pennisi, 2005;
Stokstad, 2005). For example, aspects such as the mechanisms
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(Williams and Martinez, 2000; Dunne et al., 2002; Olesen et al.,
2007; Allesina et al., 2008; Bascompte, 2009; Saavedra et al., 2009;
Bastolla et al., 2009; Fortuna et al., 2010; Encinas-Viso et al., 2012).
Quantitative population dynamics goes back to 1202 when Leo-
nardo Fibonacci, in his Liber Abaci, described the famous series
that follows the growth of rabbit population (Sigler, 2002).
Classical population theory began, however, in 1798 with Robert
Malthus' An Essay on the Principle of Population (Malthus, 1798).
Malthus argued that population growth is the result of the
difference between births and deaths, and that these magnitudes
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are proportional to the current population. Mathematically, this
translates into the differential equation:

i ron. M
where N is the population size, ry is the intrinsic rate of growth of
the population and equals the difference between the rates of
birth and death (assuming no migrations).

The Malthusian model predicts an exponential variation of the

population, which if 79 > 0 translates into an unbounded growth.
In this model, ry remains constant along the process ignoring thus
limiting factors on the population such as the lack of nutrients or
space. In 1838 Verhulst introduced an additional term, proposing
the so-called logistic equation (see Verhulst, 1845). The growth rate
must decrease as N increases to limit population growth and the
simplest way to achieve this is by making ry a linear function of N:
ro =r—aN, where r is the intrinsic growth rate and a a positive
(friction) coefficient that is interpreted as the intraspecific compe-
tition. This approach leads to the r—a model:
‘Zi;’ =rN—aN>. 2)
The term with a acts as a biological brake leading the system to a
point of equilibrium for the dynamics with a population value
approaching K =r/a, usually called the carrying capacity of the
system.

The logistic equation is best known in the form that Raymond
Pearl introduced in 1930 (see Mallet, 2012 for an excellent
historical review). In this formulation, the carrying capacity
appears explicitly, and so it is known as r—K:

dN N
E:r1\1<1—E>. 3)

The solution of this equation is a sigmoid curve that asymptotically
tends to K. This formulation has some major mathematical draw-
backs (Kuno, 1991; Gabriel et al., 2005). The most important is that
it is not valid when the initial population is higher than the
carrying capacity and r is negative. Under those conditions, it
predicts an unbounded population growth. This issue was noted
by Richard Levins, and consequently is called Levins' paradox
(Gabriel et al., 2005). It is important to stress that all mutualistic
models derived from Pearl's formula inherit its limitations in
this sense.

These seminal models of population dynamics did not take into
account interactions between species. When several species co-
occur in an community there can be a rich set of relationships
among them that can be represented as a complex interaction
network. In 1926, Vito Volterra proposed a two-species model to
explain the behavior of some fisheries in the Adriatic sea (Volterra,
1926). Volterra's equations describe prey N(t) and predator popu-
lations P(t) in the following way:

dN

P N(a—bpP),

dp

Jp = Pen—a, “)

where q, b, ¢, and d are positive constants. In the Lotka-Volterra
model, as it is known today, the prey population growth is limited
by the predator population, while the latter benefits from the prey
and is bounded by its own growth. This pair of equations has an
oscillatory solution that in the presence of further species can even
become chaotic.

While prey-predator and competition interactions have been
extensively studied, mutualistic interactions, which are beneficial
for all the species involved, have received a lower level of
attention. Interestingly, back in the XIX century, Charles Darwin
had already noticed the importance of a mutualistic interaction

between orchids and their pollinators (Darwin, 1862). Actually, the
relations between plants and their pollinators and seed dispersers
are the paradigmatic examples of mutualism. In this context,
Ehrlich and Raven (1964) alluded to the importance of plant-
animal interactions in the generation of Earth's biodiversity. The
simplest mutualistic model without ‘an orgy of mutual benefaction’
was proposed by May (1981). Each of May's equations for two
species is a logistic model with an extra term accounting for the
mutualistic benefit. It is the same idea as in the Lotka-Volterra
model but interactions between species always add to the result-
ing population. May's equations for two species can be written as

dN; Ny N,
T riN; <1 _ﬁ> +T1N1ﬂ12ﬁ,
dN2 _ N2 Nl
=t (12 ) +raNapnge ©

where N; (N3) is the population of the species 1 (2); rq, is the
intrinsic growth rate of population 1 (2) and K; (K;) the carrying
capacity. This is the maximum population that the environment
can sustain indefinitely, given food, habitat, water and other
supplies available in the environment. Finally, f,, (#5;) is the
coefficient that embodies the benefit for population 1 (2) of each
interaction with population 2 (1). May model's major drawback is
that it also leads to unbounded growth. This model has been,
anyhow, an inspiration for subsequent mutualist models that
incorporate terms to solve this problem.

Different strategies to avoid the unlimited growth have been
adopted. Wright (1989) proposed a two-species model with
saturation as a result of restrictions on handling time, Ty, which
corresponds to the time needed to process resources (food)
produced by the mutualistic interaction. The mutualistic term
can be included as a type II functional response

dN] _ 2 abN1N2

“ar =N aN TN Ty

dN2 _ 2 abN1N2

W—TzNz—(lzNz +m, (6)

where a is the effective search rate and b is a coefficient that
accounts for the rate of encounters between individuals of species
1 and 2. Wright analyzes two possible behaviors of mutualism:
facultative and obligatory. In the facultative case, r;, are positive,
i.e., mutualism increases the population but it is not indispensable
to species subsistence. If r1, are negative mutualism is obligatory
to the species survival. This model has different dynamics depend-
ing on the parameter values, but for a very limited region of
parameters shows three fixed points. One stable at both species
extinction, another also stable at large population values and a
saddle point separating both basins of attractions. Using a mutua-
listic model with a type II functional, Bastolla et al. (2005, 2009)
show the importance of the structure of the interaction network to
minimize competition between species and to increase biodiver-
sity. The type Il models are, however, hard to treat analytically due
to the fractional nature of the mutualistic term. Other recent
alternatives have been proposed as, for instance, that of Johnson
and Amarasekare (2013). Still, these works go in the direction of
adding extra features to the type II functional rendering more
difficult an eventual analytical treatment.

Recently, the research in this area has focused on system
stability, looking for an explanation of the resilience of these
communities in the interaction networks (Saavedra et al., 2009;
Bastolla et al., 2009; Thébault and Fontaine, 2010; Fortuna et al.,
2010; Staniczenko et al., 2013). The dynamics is, however, as
important since changes in the parameters that govern the
equations induced by external factors can lead the systems to
behave differently and to modify their resilience to perturbations
in the population levels. Here, we revisit the basic model
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