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H I G H L I G H T S

� We develop integrodifference equations for systems with low environmental variation.
� We use analytical methods to compare spread rates with the homogeneous model.
� The spread rates of the spatially varying model and its homogenisation are very close.
� This justifies the approximation of these landscapes with the homogeneous model.
� For cases requiring greater accuracy, we derive a higher order approximation.
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a b s t r a c t

Characterising the spread of biological populations is crucial in responding to both biological invasions
and the shifting of habitat under climate change. Spreading speeds can be studied through mathematical
models such as the discrete-time integro-difference equation (IDE) framework. The usual approach in
implementing IDE models has been to ignore spatial variation in the demographic and dispersal
parameters and to assume that these are spatially homogeneous. On the other hand, real landscapes are
rarely spatially uniform with environmental variation being very important in determining biological
spread. This raises the question of under what circumstances spatial structure need not be modelled
explicitly. Recent work has shown that spatial variation can be ignored for the specific case where the
scale of landscape variation is much smaller than the spreading population's dispersal scale. We consider
more general types of landscape, where the spatial scales of environmental variation are arbitrarily large,
but the maximum change in environmental parameters is relatively small. We find that the difference
between the wave-speeds of populations spreading in a spatially structured periodic landscape and its
homogenisation is, in general, proportional to ϵ2, where ϵ governs the degree of environmental
variation. For stochastically generated landscapes we numerically demonstrate that the error decays
faster than ϵ. In both cases, this means that for sufficiently small ϵ, the homogeneous approximation is
better than might be expected. Hence, in many situations, the precise details of the landscape can be
ignored in favour of spatially homogeneous parameters. This means that field ecologists can use the
homogeneous IDE as a relatively simple modelling tool – in terms of both measuring parameter values
and doing the modelling itself. However, as ϵ increases, this homogeneous approximation loses its
accuracy. The change in wave-speed due to the extrinsic (landscape) variation can be positive or
negative, which is in contrast to the reduction in wave-speed caused by intrinsic stochasticity. To deal
with the loss of accuracy as ϵ increases, we formulate a second-order approximation to the wave-speed
for periodic landscapes and compare both approximations against the results of numerical simulation
and show that they are both accurate for the range of landscapes considered.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the changing spatial distributions of plant popu-
lations is of utmost importance to ecologists, environmental man-
agers, conservationists (Hulme, 2006) and agronomists (Pimentel
et al., 2005). This is due to both the sizeable environmental and
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economic impacts of biological invasions (Pimentel et al., 2005;
Williamson, 1999; Pyšek and Richardson, 2010; Vitousek et al.,
1993) and the need for species to keep pace with shifting habitat if
they are to survive the effects of climate change (Zhou and Kot,
2011; Bennie et al., 2013; Bullock et al., 2012). Developing the
understanding of spatial spread through mathematical modelling
should enhance our ability to manage invasive species and the
ecological effects of climate change (e.g. Travis et al., 2013).

Both extrinsic (landscape) and intrinsic (individual) variation
have been found to be important factors in determining whether a
population spreads and its spread rate. Lewis (2000) found that
the effect of intrinsic variation is to reduce a population's ability to
spread and its spreading speed. In contrast, while landscape
structure is a decisive factor in determining whether a population
spreads and its spreading speed (Bennie et al., 2013; King and
With, 2002), its precise influence on spread is more complicated.
Mathematical models of population spread have addressed land-
scape structure in two ways (e.g. Shigesada et al., 1986; Dewhirst
and Lutscher, 2009). At one extreme, models have been developed
to explicitly represent fragmented landscapes (Gilbert et al., 2014)
while at the other extreme, many researchers have treated land-
scapes as homogeneous (Skellam, 1951; Levin, 1974; Kot et al.,
1996; Neubert and Caswell, 2000). One might expect that neglect-
ing to incorporate the landscape structure explicitly would result
in inaccurate predictions of spread. However, homogeneous
approximations have been relatively successful when compared
with real data, for example Bullock et al. (2008) and Caswell et al.
(2003). Here, we will address the question of under what circum-
stances the details of landscape structure can be ignored, and
when they must be taken into account if accurate predictions are
to be made.

We use an Integrodifference Equation (IDE) framework (Kot
and Schaffer, 1986) to model spreading populations. IDEs treat
reproduction/maturation and dispersal as separate sequential
phases in an (e.g. annual) cycle and have been widely used to
study population spread, especially in plants (Bullock et al., 2008,
2012; Neubert and Parker, 2004; Schreiber and Ryan, 2011;
Skarpaas and Shea, 2007). IDEs can incorporate stage-structured
matrix population models (Neubert and Caswell, 2000) and any
dispersal pattern that can be formulated as a dispersal kernel, the
distribution of displacements of individuals from their original
position, or (for juveniles) the position of their parent. Landscape
heterogeneity can be introduced to the model in terms of spatially
heterogeneous parameters in the dispersal kernel or the popula-
tion projection matrix. We refer the reader to the following key
papers which develop the theory of non-stage-structured IDEs:
Kot and Schaffer (1986), Kot et al. (1996), and Weinberger (1982);
stage-structured IDEs: Neubert and Caswell (2000), Neubert and
Parker (2004), and Garnier and Lecomte (2006); spatially hetero-
geneous IDEs: Dewhirst and Lutscher (2009), Weinberger (2002),
and Weinberger et al. (2008). For a full derivation of the stage
structured model, see Neubert and Caswell (2000). In the interest
of brevity, we give only a brief overview of this derivation.

In particular, the general stage-structured, spatially heteroge-
neous IDE (Neubert and Caswell, 2000) in one spatial dimension
relates the continuous population distribution at time tþ1 with
the vector valued stage-structured distribution utðxÞ at time t and
location xAR, via

utþ1ðxÞ ¼
Z 1

�1
½Kðx�y; yÞ○BðutðyÞ; yÞ�utðyÞ dy; ð1Þ

where ○ denotes the Hadamard (elementwise) product of two
matrices (Neubert and Caswell, 2000). This relation is non-
dimensional in that we do not give scales or units to length,
population density or time, with the analysis applicable to all
choices of length and time scales. In the integrand BðutðyÞ; yÞ is the

population projection matrix, with its (i,j)th entry being the ratio of
the number of individuals in stage j after the growth phase and the
number of individuals in stage i at time t (at location y). Kðx�y; yÞ
is the matrix of dispersal kernels Ki;jðx�y; yÞ for individuals which
transitioned from stage j to stage i in the growth phase. It is
necessary to consider the dispersal pattern of individuals transi-
tioning between each (permitted) pair of demographic stages
separately, as the stage of the individual or, in the case of juveniles,
its parent before the growth phase will often affect the individual's
dispersal behaviour. For example, for plants with wind dispersed
seeds, the mean dispersal distance of a seed/new juvenile will
depend on the seed release height of its parent and therefore on
its parent's demographic stage (e.g. Travis et al., 2011).

The long-term behaviour and spreading speeds of solutions
to (1) can be studied through numerical simulation. However,
analytical expressions for the persistence and spreading speed are
very useful in understanding parameter dependencies. Addition-
ally, their calculation is much less computationally expensive than
numerical simulation, so allow extensive parameter sweeps when
calculating the effects of different factors on the speed at which
the population propagates, the wave-speed.

For spatially homogeneous IDEs with no Allee effect we can
find a simple expression for the wave-speed as long as this wave-
speed is linearly determined and constant, rather than accelerating,
or asymptotically infinite. This is guaranteed under the assump-
tions given by Li et al. (2005). Under these assumptions, the
asymptotic wave-speed is given by

ĉ ¼min
s40

1
s
log ðρðsÞÞ

� �
ð2Þ

where ρðsÞ is the principal (largest in absolute value) eigenvalue of
the operator

HðsÞ ¼
Z 1

�1
½KðzÞ○A�esz dz: ð3Þ

For spatially heterogeneous IDEs, no equivalent expression
exists. This has led to the development of several analytical
approximations for the wave-speed in different scenarios and
asymptotic limits. Due to their relative tractability, these analyses
have focused on periodic landscapes of alternate (‘good’ and ‘bad’)
patches with different values for the growth and dispersal para-
meters. Mathematically, this means that the operator on the RHS
of (1) is a periodic operator (Weinberger, 2002), i.e. it is invariant
under translations of distance nL, where L is the period of the
landscape and nAZ. Kawasaki and Shigesada (2007) developed
approximations for cases when dispersal is given by the Laplace
(exponential) kernel (Kawasaki and Shigesada, 2007). Other
researchers have developed approximations applicable to any
exponentially bounded kernel, but where certain parameters in
the model must be related to each other by a small parameter ϵ{1
(with smaller ϵ giving a greater degree of accuracy). Dewhirst and
Lutscher (2009) considered landscapes where the period of the
landscape is much smaller than the scale of dispersal. They used
averaging techniques, replacing the spatially heterogeneous para-
meters with their spatial homogenisation (average), allowing the
use of results for homogeneous landscapes. Gilbert et al. (2014)
found approximations for periodic landscapes in which the spatial
scale of the good patches is much smaller than the scale of
dispersal and the demographic rates in the good patches are much
greater than those in the bad patches.

The existing approximations give accurate results (when com-
pared with numerical simulation) for spreading speeds of popula-
tions with a particular dispersal kernel or in the relevant
asymptotic limit. In contrast to previous studies, in this paper
we will derive results for landscapes with low environmental
variation, in which the environmentally driven variation ϵ in
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