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H I G H L I G H T S

� We study dynamics of subnetworks embedded in large networks by projection techniques.
� The conceptual and quantitative need to include memory terms is demonstrated.
� We obtain memory functions for the full nonlinear dynamics in PINs.
� Application to EGFR signalling allows dominant memory channels to be identified.
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a b s t r a c t

We show that in the generic situation where a biological network, e.g. a protein interaction network, is
in fact a subnetwork embedded in a larger “bulk” network, the presence of the bulk causes not just
extrinsic noise but also memory effects. This means that the dynamics of the subnetwork will depend not
only on its present state, but also its past. We use projection techniques to get explicit expressions for the
memory functions that encode such memory effects, for generic protein interaction networks involving
binary and unary reactions such as complex formation and phosphorylation. Remarkably, in the limit of
low intrinsic copy-number noise such expressions can be obtained even for nonlinear dependences on
the past. We illustrate the method with examples from a protein interaction network around epidermal
growth factor receptor (EGFR), which is relevant to cancer signalling. These examples demonstrate that
inclusion of memory terms is not only important conceptually but also leads to substantially higher
quantitative accuracy in the predicted subnetwork dynamics.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Biological networks are often complex and models are required
to try and understand their behaviour (Bhalla, 2003). This has
stimulated an ongoing research effort into the construction of
reduced models that allow one to focus on subnetworks of a larger
system. Such subnetworks may carry out biologically important
functions, or be of interest because they capture parts of the
system where there is less uncertainty in the network structure or
dynamical parameters such as reaction rates. The example net-
work considered here is epidermal growth factor receptor (EGFR)
signalling, which is a relatively small and well-studied network
(Kholodenko et al., 1999) and contains a number of subnetworks,

such as Src homology and collagen domain protein (Shc) and Shc-
interacting proteins. An understanding of the properties of such
subnetworks can be used to help rationalise the behaviour of a
larger network (Ackermann et al., 2012; Conradi et al., 2007;
Shojaie and Michailidis, 2010).

The above considerations motivate the analysis of subnetwork
dynamics by model reduction, where one starts from a description
of a large network and reduces this to an effective description of
the subnetwork. Further motivation comes from the fact that
almost any biological network that we choose to model is
incomplete, and in reality is a subnetwork embedded in a larger
“bulk” network. It is then important to understand what, in
principle, is the appropriate way of describing the dynamics in
such a subnetwork. This is the aim of this paper, and our main
result is that such a description must in principle always involve
memory effects in addition to the well-studied extrinsic noise
caused by the presence of the bulk (Swain et al., 2002; Paulsson,
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2004). We focus in our analysis on the specific example of protein
interaction networks with unary and binary reactions, but expect
that our qualitative conclusions are rather general, as suggested by
the generic nature of the intuitive explanation of memory effects:
the state of the subnetwork in the past will influence the bulk, and
this will feed back into the subnetwork dynamics in the present
(Fig. 1).

We apply the method to investigate the dynamics of a subnet-
work model of epidermal growth factor signalling (Normanno et
al., 2006). We show that the subnetwork dynamics, in the
presence of Shc and Shc-interacting proteins, are more accurately
modelled by including memory terms originating from the Shc-
centred bulk network in which the subnetwork is embedded. The
models we use obey conservation laws so that no increased gene
expression or destabilisation is incorporated. The analysis thus serves
as a first step towards quantitative modelling of experimentally
tractable perturbations and observable responses of both time
courses and steady state concentrations (Rubin and Sollich, 2014),
which may include signalling pathways with multiple ligands such as
the ErbB signalling network (Birtwistle et al., 2007).

There is a substantial literature on methods of model reduction
that attempt to simplify an initial large model down to a subnet-
work description. The aim is to do this whilst retaining the main
features of the behaviour of the original system (Okino and
Mavrovouniotis, 1998; Radulescu et al., 2012). These methods are
often based on (a) sensitivity analysis, (b) timescale separation,
(c) splitting the system into modules or (d) lumping together
components to obtain a smaller number of parameters or vari-
ables. In most of these approaches, it is assumed that the subnet-
work can be freely chosen to make the model reduction most
effective. We consider the more difficult task of finding a reduced
description for a subnetwork that is fixed in advance, e.g. because
of its relevance to the overall biological question being asked, or by
experimental constraints on which molecular species can feasibly
be monitored.

Sensitivity analysis tries to determine which molecular species
are insignificant to the dynamic system of interest (Huang et al.,
2010). A parameter is classified as insignificant if it has a low
sensitivity, in which its precise value does not have a large effect
on the concentrations of the rest of the species in the network.
Low sensitivity parameters are then eliminated or replaced by a
smaller number of effective species. However, sometimes it is
necessary to keep a low sensitivity parameter to ensure that the
results are biologically valid.

Timescale separation techniques are used to focus on the
species that contribute most to the long-time dynamics of a

system, by removing molecular species whose dynamics takes
place on much shorter timescales. This is reasonable because
biochemical processes occur on a range of timescales; changes in
gene expression levels, for example, may take place over hours
whereas protein signalling takes seconds. Timescale separation
approaches have been used by e.g. Gardiner (1984) and Thomas
et al. (2012), with the subnetwork then containing all the slow
molecular species and the bulk the fast ones. Thus, while these
authors used projection techniques as we do, memory effects did
not arise: they become negligible if the bulk is fast enough to
respond effectively instantaneously – on the timescale of the
subnetwork dynamics – to the state of the subnetwork. Here we
consider signalling networks where the timescales of the
dynamics of the subnetwork and the bulk are comparable, so that
timescale separation methods are not directly applicable.

Another way to reduce the system is to split it into modules
where each module has a different function and a limited number
of interactions with the other modules (Hartwell et al., 1999).
Conzelmann et al. (2004) apply dimensional reduction to the
modules so that the modules have reduced complexity but show
similar input and output behaviour.

Lumping together variables with similar features also allows
one to reduce the size of a model (Sunnaker et al., 2011;
Conzelmann et al., 2004); however, lumping components together
may make it difficult to interpret the results because the lumped
variables may not retain their original meaning. Similarly
Liebermeister et al. (2005) reduce the bulk surrounding a chosen
subnetwork, whilst the subnetwork is kept in its original form. As
one might expect, accounting for the bulk in this way, i.e.
considering the environment surrounding the subnetwork, yields
a reduced model that is more accurate than modelling just the
isolated subnetwork. Our work extends this result by showing
that the inclusion of memory effects arising from the bulk gives a
significantly more accurate description of the subnetwork
dynamics. Apri et al. (2012) remove or modify reactions and
parameters based on their effect on the output behaviour of the
system. They consider which parameters can be removed or
lumped together to obtain output data correct to within a certain
tolerance. Although no detailed prior biological knowledge of the
system is needed, there must be some qualitative understanding of
the system dynamics to ensure that no species which are generally
considered to be an important part of the network dynamics are
removed.

Our approach starts from kinetic equations for the concentra-
tions of a set of molecular species in a large protein interaction
network, allowing for small amounts of intrinsic noise caused by
fluctuations in the copy number of each species as shown in Fig. 2
(a). We then use a projection operator formalism to obtain a set of
dynamical equations for selected variables from the network,
which define the chosen subnetwork. This approach retains
information from the remainder of the larger network, i.e. the
bulk, and allows us to obtain a reduced set of equations for the
subnetwork (Fig. 2(b)). These projected equations contain extrinsic
noise arising from the bulk dynamics as expected, but crucially the
noise is accompanied by memory terms (Fig. 1). The memory
terms are represented mathematically as integrals over the past
history of the subnetwork, modulated by memory functions. These
are the focus of our analysis. In Section 2 we explain the projection
approach and how it can be applied to protein interaction net-
works. We also illustrate the method with a simple example that
already captures some general properties of memory functions
(Fig. 2(c)). Next, in Section 3 we obtain closed-form expressions for
memory functions in protein interaction network dynamics and
discuss and illustrate some of their properties, e.g. the amplitudes
and what they tell us about reactions between the subnetwork
and the bulk. Finally in Section 4 we apply our approach to the

Fig. 1. Extrinsic noise versus memory. (a) Extrinsic noise on the subnetwork S
arises from fluctuations of the bulk B that are uncontrolled and generally
uncontrollable via experimental conditions. (b) Memory effects arise because the
behaviour of S in the past will generically influence B, and this effect will feed back
to S at a later time: the time evolution of S depends on its own past.

K.J. Rubin et al. / Journal of Theoretical Biology 357 (2014) 245–267246



Download English Version:

https://daneshyari.com/en/article/6370311

Download Persian Version:

https://daneshyari.com/article/6370311

Daneshyari.com

https://daneshyari.com/en/article/6370311
https://daneshyari.com/article/6370311
https://daneshyari.com

