Author's Accepted Manuscript

Modeling forest ecosystem responses to elevated carbon dioxide and ozone using artificial neural networks

Peter E. Larsen, Leland J. Cseke, R. Michael Miller, Frank R. Collart

www.elsevier.com/locate/yjtbi

PII: S0022-5193(14)00336-1

DOI: http://dx.doi.org/10.1016/j.jtbi.2014.05.047

Reference: YJTBI7766

To appear in: Journal of Theoretical Biology

Received date: 10 July 2013 Revised date: 23 May 2014 Accepted date: 31 May 2014

Cite this article as: Peter E. Larsen, Leland J. Cseke, R. Michael Miller, Frank R. Collart, Modeling forest ecosystem responses to elevated carbon dioxide and ozone using artificial neural networks, *Journal of Theoretical Biology*, http://dx.doi.org/10.1016/j.jtbi.2014.05.047

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Modeling forest ecosystem responses to elevated carbon dioxide and ozone using artificial neural networks

Peter E. Larsen^{1*}, Leland J. Cseke², R. Michael Miller¹, Frank R. Collart¹

*Corresponding author. Tel.:1 (630) 252-3984

Email address: plarsen@anl.gov

Coauthors Email address: csekel@uah.edu (L. Cseke), rmmiller@anl.gov (R. Miller), fcollart@anl.gov (F. Collart)

HIGHLIGHTS

- Different aspen clones have characteristic responses to elevated atmospheric concentrations of carbon dioxide and ozone
- Observed aspen community phenotypes for an aspen forest ecosystem can be accurately modeled using an Artificial Neural Network approach
- Clone-specific regulatory networks associated with sensitivity to elevated atmospheric concentrations of carbon dioxide and ozone are predicted
- The specific molecular mechanisms that distinguish clone-specific responses to environmental conditions are proposed by this computational model will form the basis for future experimental validation

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

¹Argonne National Laboratory, Biosciences Division, 9700 South Cass Avenue, Argonne, IL 60439, U.S.A.

²Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, U.S.A.

Download English Version:

https://daneshyari.com/en/article/6370323

Download Persian Version:

https://daneshyari.com/article/6370323

<u>Daneshyari.com</u>