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H I G H L I G H T S

� The ability to retrieve ancestral information depends on the parameter being inferred.
� Ancestral state and other parameters are more accurately estimated for younger tumors.
� Methylation/demethylation rate ratio can be estimated in tumors in stationary phase.
� Number of cancer stem cells can be inferred in most tumors and varies significantly.
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a b s t r a c t

A tumor is thought to start from a single cell and genome. Yet genomes in the final tumor are typically
heterogeneous. The mystery of this intratumoral heterogeneity (ITH) has not yet been uncovered, but
much of this ITH may be secondary to replication errors. Methylation of cytosine bases often exhibits ITH
and therefore may encode the ancestry of the tumor. In this study, we measure the passenger
methylation patterns of a specific CpG region in 9 colorectal tumors by bisulfite sequencing and apply
a tumor development model. Based on our model, we are able to retrieve information regarding the
ancestry of each tumor using approximate Bayesian computation. With a large simulation study we
explore the conditions under which we can estimate the model parameters, and the initial state of the
first transformed cell. Finally we apply our analysis to clinical data to gain insight into the dynamics of
tumor formation.

& 2014 Published by Elsevier Ltd.

1. Introduction

The mechanisms by which tumors grow remain poorly under-
stood. Various models have been proposed to study tumor initia-
tion, growth and progression. An early study (Laird, 1964) showed
that the Gompertzian model fitted experimental data remarkably,
although later research indicated that a Gompertzian model will
fail when the tumor is small or when the interaction between the
tumor and the host immune system is included in the model
(d’Onofrio, 2005). Tumor growth can also be modeled by partial
differential equations and mixture theory (Ambrosi and Preziosi,
2002; Byrne and Preziosi, 2003) with an emphasis on mass build-
up and the geometry of the tumor. Some later tumor models
(Anderson et al., 2008; Klein and Hölzel, 2006) focus on single-cell
level behavior. Technologic advances such as single-cell tumor

sequencing (Navin et al., 2011) will increasingly provide more
experimental data for inferring tumor population structure.

Fitting models of tumor growth is problematic because we do
not typically observe that growth. Rather, we observe an end point
of that growth. Furthermore, we are not able to observe the clonal
expansion of a single cell that is thought to initiate tumor growth
(Hong et al., 2010; Siegmund et al., 2009). Since the parameters of
tumor growth, or state of initial single cell before clonal expansion,
might contain important prognostic flags for future tumor beha-
vior, it is vital to explore how well they might be inferred from
data collected from the final tumor. In this paper we explore this
issue using approximate Bayesian computation (ABC), a method
that allows principled analysis in contexts such as ours where
models are of sufficient complexity to make more traditional
analysis methods intractable.

The key intuition that we exploit is that ancestry can be
inferred from the variation between genomes (cf., inference of
mtEVE, or Y-chromosome Adam, from human genotype data
(Marjoram and Donnelly, 1997; Pritchard et al., 1999)). The greater
the differences between genomes, on average the greater the time
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since a common ancestor (themolecular clock hypothesis (Bromham
and Penny, 2003)). Molecular phylogeny is usually employed to
reconstruct the pasts of macroscopic populations such as indivi-
duals or species, but it can also be used to infer the fates of somatic
cells within an individual. Accurate inference of somatic cell
phylogenies would be extremely valuable, especially for human
tissues, because more direct experimental observations are often
impractical. However, a problem with comparing somatic cell
genomes within an individual is that few somatic mutations are
expected to accumulate within a lifetime (Shibata and Lieber,
2010). To overcome this practical shortcoming, recent studies have
employed epigenetic measurements such as DNA methylation
patterns DNA methylation is a covalent modification at CpG
dinucleotides that is also copied after DNA replication. However,
unlike base replication, epigenetic replication fidelity is markedly
lower at certain CpG rich regions. Therefore, DNA methylation
patterns measurably change during normal human aging and are
often highly polymorphic within an individual (Shibata, 2009).
Consequently, the 50 to 30 order of DNA methylation can be used to
infer the history of a tumor in a way that is directly analogous to
the use of nucleotide variation to infer history of individuals
(Shibata and Tavaré, 2006).

DNA methylation patterns at non-expressed CpG rich regions
(“passenger methylation”) have been used to reconstruct the past of
human tissues such as colon crypts and tumors (Yatabe et al., 2001).
However, it is uncertain with how much precision the pasts of
somatic cells can be inferred from methylation patterns. Complicat-
ing factors include uncertainties imposed by rapid replication
errors, stepwise changes (both methylation and demethylation are
possible), and possible variations in error rates between neighbor-
ing CpG sites that may depend on the methylation status of
neighboring sites. Potentially, certain aspects of ancestry are more
recoverable from passenger methylation patterns.

Specifically for human tumorigenesis, simple unknowns are the
ancestral state of the first tumor cell, how fast a tumor grows, and
its mitotic age (numbers of divisions between the first tumor cell
and tumor removal). To further explore the utility of passenger
methylation patterns for the reconstruction of human tumorigen-
esis, we simulate data under a variety of tumor growth models,
and evaluate our ability to estimate parameters capturing tumor
growth behavior, extending earlier work (Hong et al., 2010;
Siegmund et al., 2009) in which we focused on estimation of three
parameters: the total number of cell divisions (tumor age), the
number of cancer stem cells per gland, and the probability of
asymmetric stem cell division.

2. Data, model and methods

2.1. Experimental data and model

We applied our analysis methodology to a data set that consists
of information from 9 colorectal tumors. The methylation patterns
of a short CpG-rich region (LOC, 14 CpG sites) were measured
using bisulfite sequencing. We sampled eight cells per gland, and
eight glands per half, in each tumor.

We model actual physical tumor growth, beginning with the
clonal expansion of a single cell (Hong et al., 2010; Siegmund et al.,
2009), applying a biological constraint on the total number of
tumor cells (e.g. assuming 1 billion cells/1 cm3), and making use of
clinical data on tumor size to inform our model. Tumors arising
from glandular tissues such as the colon, with cells organized into
small tubular units, are typically adenocarcinomas which are
composed of many neoplastic glands. Adenocarcinomas are also
common in the breast, prostate, lung, pancreas, and stomach.
As such, dividing cancer cells in our model are geographically

confined to cancer glands, which also divide, with constraints on
the total number of cells based on the size of the tumor (see Fig. 1).
Our model directly reflects this glandular structure.

A tumor is simulated as the clonal expansion of a single
transformed cell. A 4 cm3 tumor contains approximately 4 billion
cells, which is impossible to simulate at the single-cell level by
forward simulation. However, the organization of tumor cells
within glands allows for a flexible growth modeling across two
different scales, cell level and gland level. Since one gland contains
approximately 8000 cells, a 4 cm3 tumor can be approximated by
only 500,000 glands. This size is achieved after only 19 genera-
tions of exponential growth. We mimic the structure of our
sampled data by sampling only eight glands from the �500,000,
and storing their ancestral tree. This is followed by the simulation
of single-cells along the ancestral tree for the sampled glands. This
approach allows us to simulate for each tumor a sample of �33 K
cells (¼4096 cells/gland �8 sampled glands) instead of a total of
�4 billion. This ensures computational tractability.

The cells and glands follow separate models for growth. We
model gland growth as exponential growth followed by a period of
constant size (see Fig. 1) At the cell-level, the single transformed cell
undergoes exponential growth (cell doubling) until it attains the
number required of the first cancer gland (see Fig. 1). In subsequent
generations, the cells in the gland divide until they double in
number, and then the gland divides. Both the cells and glands
continue to divide, forming a second period of exponential growth
(phase one for gland tree growth), until the tumor reaches its fixed
biological size. The tumor then enters the second phase of the gland
tree growth, in which the gland number remains constant, but the
cells within glands divide and die, allowing for continued ‘aging’ in
a tumor of fixed size (no growth). Cell division and death occurs via
symmetric and asymmetric division. We refer to long-lived dividing
cells lines as cancer stem cell lines. The model for cancer stem cell
division is as follows. Under asymmetric division, a cancer stem cell
differentiates into one cancer stem cell and one normal cancer cell,
while under symmetric division, a cancer stem cell have 0.5 prob-
ability to give birth to two cancer stem cells and 0.5 probability to
divide into two normal cancer cells. This is parameterized by
probability of asymmetric division (PAD) that controls the propor-
tion of cancer stem cells having asymmetric division. Finally, the
DNA methylation patterns are sampled from approximately 16
glands per tumor, eight per tumor half. For a detailed mathematical
description of the model, see (Siegmund et al., 2009), in which the
same parameterization is used.
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Fig. 1. The tumor growth model. Top graph shows the division of the 1st
transformed cell into a gland. The bottom graph shows the exponential growth
and the constant-size growth of the glands in one tumor half. See text for more
details.
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