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Layered decomposition for the model order reduction of timescale
separated biochemical reaction networks
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HIGHLIGHTS

e Layering reaction networks is an alternative to modular decomposition.

e Layering identifies timescale-separated variables without transformations.

e Fast and slow subsystems can be expressed in terms of original variables.

e Approximated dynamics are interpreted as summed contributions from fast and slow layers.
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Biochemical reaction networks tend to exhibit behaviour on more than one timescale and they are
inevitably modelled by stiff systems of ordinary differential equations. Singular perturbation is a well-
established method for approximating stiff systems at a given timescale. Standard applications of
singular perturbation partition the state variable into fast and slow modules and assume a quasi-steady
state behaviour in the fast module. In biochemical reaction networks, many reactants may take part in
both fast and slow reactions; it is not necessarily the case that the reactants themselves are fast or slow.
Transformations of the state space are often required in order to create fast and slow modules, which
thus no longer model the original species concentrations. This paper introduces a layered decomposi-
tion, which is a natural choice when reaction speeds are separated in scale. The new framework ensures
that model reduction can be carried out without seeking state space transformations, and that the effect
of the fast dynamics on the slow timescale can be described directly in terms of the original species.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A characteristic of many complex biological systems, including
biochemical reaction networks, is that dynamical processes can
occur on multiple, vastly different timescales (Southern et al.,
2008; Jamshidi and Palsson, 2008). Modelling such a system by
taking into account all of the timescales simultaneously results in
stiff models. Simulation of these models requires fine temporal
resolution to capture the fastest dynamics. If we are only inter-
ested in the behaviour of the system on a slower timescale,
singular perturbation (Hinch, 1991; Murray, 2002) is a well-
established model approximation technique which aims to capture
the important dynamics at that timescale and remove the stiffness
arising from the faster dynamics, making simulation and analysis
more practical.
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Fig. 1 represents the method of model reduction through
singular perturbation as a sequence of steps. The first step is the
identification of non-dimensional fast and slow variables, by
which the system can be described by interconnected dynamic
subsystems. The subsystem corresponding to the timescale which
is not of interest is then approximated to be a static subsystem.
The final step is the expression of the approximated system in
terms of the original variables. In addition to approximating a stiff
model with a non-stiff model, singular perturbation is also a
model reduction technique. The reduction occurs because repla-
cing a dynamic subsystem with a static subsystem (the second
step in Fig. 1) removes differential equations from the recomposed
system.

Grouping reactants into fast and slow subsets is an example of
modular decomposition (Alexander et al., 2009). In the case of
biochemical networks, this classification may be difficult. The
variables are concentrations of reactants, but often the parameters
are such that it is instead the reaction rate constants which
separate in scale. If one reactant takes part in both fast and slow
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Fig. 1. The approximation of a stiff system through singular perturbation is broken
down into three stages. First the system is decomposed into an interconnection of
fast and slow subsystems, discussed in Section 2. In the second stage, discussed in
Section 3, the fast subsystem is approximated by a static subsystem. Finally, the
entire singularly perturbed system is formed from the recomposition of the original
slow subsystem with the new static subsystem.

reactions, it cannot be classified as either fast or slow (Bennett
et al,, 2007; Lee and Othmer, 2010).

Up to now, the remedy for this has been to find a transforma-
tion of the state space to create pooled variables (Kumar et al.,
1998). These are new variables, formed out of combinations of the
reactant concentrations, whose dynamics allow them to be classi-
fied as fast or slow. For example, the well-known QSS approxima-
tion of the elementary enzyme reaction network is not valid when
the enzyme concentration is on the same scale as that of the other
reactants. The tQSS approximation (Tzafriri, 2003; Ciliberto et al.,
2007) creates a new variable as a linear combination of two
physical quantities that, for a given parameter range, allows a
valid classification of variables as fast or slow. The improvement in
approximation error (Prescott and Papachristodoulou, 2012) by
taking the tQSS approach is at the expense of defining a new
variable modelling a total concentration, rather than one of the
original concentrations of interest.

This paper aims to perform singular perturbation of biochem-
ical networks while avoiding finding transformations of the state
variables. This will simplify the procedure of singular perturbation
and also create fast and slow subsystems which have a biochem-
ical interpretation in terms of the original variables. This is done
by first reconsidering the decomposition of the system into sub-
systems in Section 2. It will be shown that an alternative decom-
position method, termed layering (Prescott and Papachristodoulou,
2013), completes step 1 in Fig. 1 without requiring any transfor-
mations. We will then show in Section 3 how the approximation
arising from such a decomposition results in reduced models,
demonstrating our methods on two biological examples.

2. Decomposing biochemical reaction networks

This paper will focus on a standard ODE model for biochemical
reaction networks (Palsson, 2006). Suppose such a network con-
sists of N reactants X; taking part in M reactions. The concentration
of each reactant, denoted x;(t), is a component in the state variable
x(t) e RN. The rate at which reaction j occurs is denoted vi(x),
where the argument is x to make explicit that each reaction rate
may depend on the concentrations of any of the reactants at each
point in time. The reaction rates form the components of the flux

vector v(x) e R™. The stoichiometric coefficient of X; in the jth
reaction is denoted Sy, which represents the change in concentra-
tion of X; as reaction j proceeds. Each coefficient S; forms the
stoichiometric matrix Se RN*M. These structures combine into a
system of N coupled ODEs

dx
a- Sv(x) (1)

where the initial conditions are denoted x(0) = xo.

In this section we will discuss how singular perturbation
techniques can be interpreted as a decomposition of stiff systems
into interconnected subsystems of characteristic time scales, as in
Fig. 1. With this interpretation, we will show that established
methods involving transformations correspond to a modular
decomposition of the system. We then introduce a complementary
decomposition, termed layering, which results in an alternative
method for singular perturbation that avoids transformations and
thus retains the natural coordinates (i.e. species concentrations)
for each subsystem.

2.1. Modular decomposition of timescale-separated systems

The first stage of the approximation of a stiff non-dimen-
sionalised ODE system through singular perturbation is the
attempt to classify variables (i.e. reactants) as fast or slow. Suppose
that the N components of the state variable x can be partitioned
into two groups, where the components of x; e RV are Ny fast
reactants and the components of x; e R™ are N, slow reactants.
Assuming a re-ordering of the reactants index, we can write
X= (x},xsT)T. The classification into fast and slow reactants can be
justified through the existence of a positive parameter € < 1 such
that the non-dimensional system (1) can be written

€X S
) [gn

where the rows of S have been re-ordered and partitioned
appropriately to the components of x = (xfT,xsT)T. This representa-

tion makes clear the decomposition of the system into an inter-
connection of fast and slow modules:

€Xf = SfV(Xf,XS),
Xs = ssV(xf,Xs)-

The full system state x can be recovered from the modular system

states through the concatenation x = (xfT,xsT)T.

However, often the parameters of the dynamical system are
such that there is no decomposition of the state vector x = (X, Xs)
into variables with timescale-separated dynamics. For example,
consider the enzyme kinetics network

X+E k":‘ cByiE
-1

modelling enzyme E converting X to Y via an intermediate
complex C. If the initial concentration [E(0)] = e(0) of enzyme is
on a much smaller scale than that of the substrate [X(0)] = x(0)
then the non-dimensionalised variables do separate in timescale
through the standard quasi-steady state (QSS) approximation.
However, if e(0) is on a similar scale to that of x(0), it is no longer
valid to assume that the non-dimensionalised variables separate in
timescale, and another approximation must be found.

The standard technique in this case is to find a linear transfor-
mation T of the state vector so that the new state z=Tx can be
decomposed into fast and slow variables z = (z, z). In general the
required transformations are difficult to calculate, especially in the
case of large-scale systems, and are often driven by intuition. Even
when found, transformations of the state vector create linear
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