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H I G H L I G H T S

� Devised new model for the evolution of water-borne diseases incorporating heterogeneity.
� Incorporated multiple water sources for the first time.
� Fitted model to real data from Haiti.
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a b s t r a c t

We formulate a mathematical model that captures the essential dynamics of waterborne disease
transmission to study the effects of heterogeneity on the spread of the disease. The effects of
heterogeneity on some important mathematical features of the model such as the basic reproduction
number, type reproduction number and final outbreak size are analysed accordingly. We conduct a real-
world application of this model by using it to investigate the heterogeneity in transmission in the recent
cholera outbreak in Haiti. By evaluating the measure of heterogeneity between the administrative
departments in Haiti, we discover a significant difference in the dynamics of the cholera outbreak
between the departments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Waterborne diseases can be transmitted via person–water–per-
son contact. This means that an infected individual will first shed
pathogens into the water source and susceptible individuals can then
contact the disease when they drink contaminated water. In reality,
the transmission rate and the shedding rate vary from one individual
to another, hence leading to heterogeneity in the transmission of
waterborne diseases. Even though, in some of the theoretical studies
on the dynamics and control intervention strategies (Tien and Earn,
2010; Zhou et al., 2012; Mwasa and Tchuenche, 2011; Liao andWang,
2011; Capasso and Paveri-Fontana, 1979; Pourabbas et al., 2001;
Codeco, 2001; Ghosh et al., 2004; Hartley et al., 2006; King et al.,
2008; Eisenberg et al., 2003; Mukandavire et al., 2011a, 2011b) this is
not taken into account, heterogeneity is crucial to understand the
dynamics of waterborne disease and how best to reduce the spread
of the infection. Since most of the factors affecting the spread of

waterborne diseases vary within and across a population, it is
expected that most of the important mathematical features of
waterborne disease models such as the basic reproduction number,
the type reproduction number and the final outbreak size will also
vary. Understanding the behaviour of each of these mathematical
features is very important in defining better control intervention
strategies that will reduce the spread of the disease. It is our interest
in this study to explore the effects of heterogeneity on each of the
mathematical feature of waterborne disease model which is neces-
sary for defining better control strategies that will reduce the spread
of the disease.

Waterborne disease can be transmitted through contaminated
environmental water sources such as lake, river as well as through
contaminated household water sources like pond, private water
reservoir, etc. (Huq et al., 2005). It is important to know that some
individuals can be exposed to more than one contaminated water
source thus adding more heterogeneity in disease transmission.
To take this into account, it is necessary to consider a situation
whereby individuals are exposed to multiple contaminated water
sources.

Consider a community where individuals are exposed to multi-
ple contaminated water sources. Despite the fact that individuals
are exposed to contaminated water sources, studies have shown
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that some groups of individuals (especially children) are more
vulnerable to infection. Some of the reasons for this differences
might be due to hygienic practices of the individuals (like boiling
water before drinking, washing hands after going to the toilet,
proper washing of dishes and food before eating) and the level of
the immune system of the individuals. Understanding the
dynamics of waterborne diseases for such a community is com-
plicated as homogeneous models cannot explain such situations.
As a result we resort to a multi-group model where a number of
environmental, biological and socio-economic factors are used to
categorise a group or sub population.

Tuite et al. (2011) constructed a mathematical model of cholera
epidemic dynamics for the ten departments in Haiti that is based
on both population and distance (a “gravity” model) between the
departments. They used the model to predict the sequence and
timing of regional cholera epidemics in Haiti and explore the
potential effects of disease-control strategies. Bertuzzo et al. (2011)
formulated a mathematical model which describes the epidemio-
logical dynamics and pathogen transport and use it to determine
the timing and the magnitude of the epidemic in the ten Haitian
departments. Mukandavire et al. (2013) formulated a system of
coupled stochastic differential equations and use it to estimate the
reproductive numbers and vaccination coverage for the cholera
outbreak in Haiti. Robertson et al. (2013) extended the Tien and
Earn (2010) model to an n-patch waterborne disease model in
networks with a common water source to investigate the effect of
heterogeneity in dual transmission pathways on the spread of the
disease. Other works being done on spatially explicit models of
waterborne diseases include those by Bertuzzo et al. (2010), Mari
et al. (2011) and Gatto et al. (2012).

There is no doubt that the above studies have contributed
immensely towards understanding the dynamics and control of
waterborne diseases particularly for the recent cholera outbreak in
Haiti. To the best of our knowledge, the heterogeneity in the
transmission dynamics of waterborne disease has not yet been
explored neither have it been investigated for the recent cholera
outbreak in Haiti. The objectives of this paper is to develop and
analyse a mathematical model in order to improve the under-
standing of the transmission dynamics of waterborne disease. We
do this by investigating the heterogeneity in the transmission
dynamics of the model and consequently use the model to
investigate the heterogeneity in the recent cholera outbreak
in Haiti.

The remaining part of this work is organized as follows: the
model we are going to discuss is formulated in Section 2 and its
qualitative analyses are carried out in Section 3. In Section 4,
we apply our model to investigate heterogeneity in the recent
cholera outbreak in Haiti. We conclude the paper by discussing our
results in Section 5.

2. Model formulation

To formulate the model, we consider a total human population
N where individuals are exposed to m multiple contaminated
water sources. We partition the population into n distinct sub
populations or groups based on the activity level. These groups
when combined together form the total population model in
which secondary infections can be generated both within a given
group and between groups. The secondary infections within a
group occur when an individual from a group sheds pathogens
into water sources with which susceptible individuals from the
same group subsequently come into contact. However, if the
susceptible individuals that come in contact with the pathogens
shed from an individual are from different groups, we say that
secondary infections between groups have occurred.

We partition N, the total human population of a community at
risk for waterborne disease infections, into n groups or homo-
geneous sub populations of size Nj such that each group is made
up of susceptible Sj(t), infected Ij(t) and recovered Rj(t), individuals.
The compartment Wk measures pathogen concentration in water
reservoir k. In this study, we assume that there is no person to
person transmission and only consider transmission through
contact with contaminated water, as it is often considered to be
the main driver of waterborne disease outbreaks (Mukandavire et
al., 2011b; Sanches et al., 2011). Susceptible individuals Sj(t)
become infected through contact with the contaminated water
sourcesWk at rate bjk. Infected individuals Ij(t) can contaminate the
water source k by shedding pathogen into it at rate θjk. The Ij(t) can
recover naturally at rate γj. Pathogens in the contaminated water
source k grow naturally at rate αk and decay at rate ξk. We assume
that sk ¼ �ðαk�ξkÞo0 is the net decay rate of pathogens in the
kth water reservoir. Natural death occurs in all the groups at rate μ.
Note that j¼ 1;2;…;n and k¼ 1;2;…;m. Putting these assump-
tions together, we obtain the model

_S1ðtÞ ¼ μN1ðtÞ�S1ðtÞ ∑
m

k ¼ 1
b1jWkðtÞ�μS1ðtÞ;

_I1ðtÞ ¼ S1ðtÞ ∑
m

k ¼ 1
b1kWkðtÞ�ðμþγ1ÞI1ðtÞ;

_R1ðtÞ ¼ γ1I1ðtÞ�μR1ðtÞ:

_S2ðtÞ ¼ μN2ðtÞ�S2ðtÞ ∑
m

k ¼ 1
b2jWkðtÞ�μS2ðtÞ;

_I2ðtÞ ¼ S2ðtÞ ∑
m

k ¼ 1
b2kWkðtÞ�ðμþγ1ÞI2ðtÞ;

_R2ðtÞ ¼ γ2I2ðtÞ�μR2ðtÞ;
⋮¼ ⋮

_SnðtÞ ¼ μNnðtÞ�SnðtÞ ∑
m

k ¼ 1
bnkWkðtÞ�μSnðtÞ;

_InðtÞ ¼ SnðtÞ ∑
m

k ¼ 1
bnkWkðtÞ�ðμþγnÞInðtÞ;

_RnðtÞ ¼ γnInðtÞ�μRnðtÞ;

_W 1ðtÞ ¼ ∑
n

j ¼ 1
θj1IjðtÞ�s1W1ðtÞ;

_W 2ðtÞ ¼ ∑
n

j ¼ 1
θj2IjðtÞ�s2W2ðtÞ;

⋮¼ ⋮

_WmðtÞ ¼ ∑
n

j ¼ 1
θjmIjðtÞ�smWmðtÞ: ð1Þ

A pictorial illustration of model (2) showing all the possible
transmission dynamics that resulted in heterogeneity is given in
Fig. 1. The model (1) can be written in compact form as

_SjðtÞ ¼ μNjðtÞ�SjðtÞ ∑
m

k ¼ 1
bjkWkðtÞ�μSjðtÞ;

_I jðtÞ ¼ SjðtÞ ∑
m

k ¼ 1
bjkWkðtÞ�ðμþγjÞIjðtÞ;

_WkðtÞ ¼ ∑
n

j ¼ 1
θjkIjðtÞ�skWkðtÞ;

_RjðtÞ ¼ γjIjðtÞ�μRjðtÞ; ð2Þ

where j¼ 1;2;…;n and k¼ 1;2;…;m. Variables and parameters of
the model (2) with their meaning are given in Table 1. The force of
infection in patch j is given by the linear term ∑m

k ¼ 1bjkWk (Guo,
2012; Lloyd and May, 1996). Since our interest is on heterogeneity
in transmission dynamics of the waterborne disease which can be
generated due to differences in contact rates and shedding rates,
we will not consider explicit movement of individuals from one
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