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a b s t r a c t

Adaptive dynamics shows that a continuous trait under frequency dependent selection may first
converge to a singular point followed by spontaneous transition from a unimodal trait distribution into a
bimodal one, which is called “evolutionary branching”. Here, we study evolutionary branching in a
deme-structured population by constructing a quantitative genetic model for the trait variance
dynamics, which allows us to obtain an analytic condition for evolutionary branching. This is first
shown to agree with previous conditions for branching expressed in terms of relatedness between
interacting individuals within demes and obtained from mutant-resident systems. We then show this
branching condition can be markedly simplified when the evolving trait affect fecundity and/or survival,
as opposed to affecting population structure, which would occur in the case of the evolution of dispersal.
As an application of our model, we evaluate the threshold migration rate below which evolutionary
branching cannot occur in a pairwise interaction game. This agrees very well with the individual-based
simulation results.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In evolutionary game theory, individuals are allowed to interact
with each other and selection will be frequency-dependent. Even
in a constant environment, a population may then show intriguing
temporal dynamics. For example, if a trait evolves by the accumu-
lation of small mutations and if disruptive selection stemming
from frequency-dependent selection is at work, a continuous trait
may show convergence to a singular point followed by sponta-
neous splitting of a unimodal trait distribution into a bimodal (or
multimodal) one, referred to as “evolutionary branching” (Metz
et al., 1992, 1996; Geritz et al., 1997). Evolutionary branching is
predicted to occur at an evolutionarily singular point that is
approaching stable (or convergence stable, CS, Eshel, 1983) but
not evolutionarily stable (ES), and it is actually observed in
individual-based simulations in many models for the evolution
of ecological traits (Doebeli et al., 2004; Brännström et al., 2011).

One important contribution of evolutionary game theory and
adaptive dynamics is the analytically tractable prediction of the
criteria of evolutionary branching, i.e., the CS and non-ES condi-
tion (e.g., Eshel, 1983; Geritz et al., 1997), which generally agrees

well with individual-based simulations. This has been applied to a
large spectrum of ecological scenarios involving both inter- and
intra-specific interactions. However, the standard application of
the recipe assumes an infinite and well-mixed population to
obtain the stability criteria. Since real populations are always
finite and usually have a spatial structure (dispersal is localized
and organisms are likely to interact with neighbors), extending the
criteria of stability to more realistic models is biologically relevant.

One important contribution of evolutionary game theory and
inclusive fitness theory is an analytically tractable measure of
selection (or mutant invasion fitness) for deme-structured popula-
tions (e.g., Taylor, 1988; Frank, 1998; Rousset, 2004), which provides
a condition for convergence stability (Rousset, 2004). Owing to the
smallness of local deme size, any analytic measure of selection
needs to take into account local fluctuations of allele frequencies
induced by genetic drift. This generates positive correlations of
mutant frequencies among individuals in the same deme, making
mutant-mutant interactions unavoidable. The concept of related-
ness plays a crucial role here, as it allows to reduce the problem of
computing the full local distribution of mutants (and thus account-
ing for their interactions) to the simpler problem of computing the
probability that two genes sampled from different individuals are
identical-by-descent, thereby making tractable the evaluation of
invasion fitness. This has been applied to a large number of different
social scenarios (e.g., Frank, 1998), and agrees generally well
with individual-based simulations (e.g., Bulmer, 1986, Pen, 2000;
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Leturque and Rousset, 2002; Rousset and Ronce, 2004; Guillaume
and Perrin, 2006). However, the standard application of the recipe
usually ignores the possibility of branching.

Evolution of continuous traits under a wide variety of different
biological situations has been studied using adaptive dynamics
and inclusive fitness (e.g., Metz et al., 1992; Dieckmann and Law,
1996; Geritz et al., 1997, 1998; Frank, 1998; Rousset, 2004;
Wenseleers et al., 2010). Branching condition in structured popu-
lations has been studied using the number of successful emigrants
descended from a mutant immigrant, Rm, as invasion fitness
measure (e.g., Metz and Gyllenberg, 2001; Parvinen and Metz,
2008; Ajar, 2003). The 2nd-order derivative R″

m being positive is
the non-ES condition in this approach. Day (2001) takes a slightly
different approach and calculates the expected fitness of a carrier
of the mutant allele under a probability distribution of the number
of mutant alleles in the same deme.

It is relevant to mention that the previous approaches compute
invasion fitness under the assumption that there are only two types
(or alleles), the mutant and the resident, present in the population.
From a stochastic process point of view, this is obtained in the
asymptotic of rare mutations, where adaptive evolution is described
as a monomorphic jump process that gives rise to the so-called
canonical equation of adaptive dynamics (Dieckmann and Law,
1996; Champagnat et al., 2006a,b). Strictly speaking, branching is
impossible unless at least three alleles segregate in the population
(e.g., Wakano and Lehmann, 2012). Thus, the mutant-resident
approach based on a two-allele system does not directly deal with
evolutionary branching, but only provides an ad-hoc measure of
disruptive selection, which matches very well with results from
simulations.

There is, however, another approach to describe the adaptive
dynamics. This is to model the trait distribution dynamics as in
quantitative genetics. Some studies directly deal with the evolu-
tion of the full phenotypic distribution (e.g., Sasaki and Ellner,
1995; Jabin and Raoul, 2011; Mirrahimi et al., 2012), while other
studies focus only on some important moments of the distribution
such as the mean or the variance (Iwasa et al., 1991; Abrams et al.,
1993; Day and Taylor, 1996; Sasaki and Dieckmann, 2011). The
dynamics of these moments can be derived under some assump-
tions on the trait distribution, which is called the moment closure.
In this distributional context, which is generally applied to
panmictic populations, evolutionary branching is characterized
by the increase of the variance in the trait distribution (Sasaki
and Dieckmann, 2011). This approach can also be extended to
finite and well-mixed population models, in which case the trait
variance dynamics provides the branching condition in finite
populations (Wakano and Iwasa, 2013).

Here, we aim to construct a model to obtain the condition for
evolutionary branching from the variance in the trait distribution
in a population subdivided into demes of finite size. To that end,
we derive moment dynamics to the 2nd-order of selection and
study the 1st (mean) and 2nd (variance) moments. In doing so, we
combine elements of inclusive fitness theory, adaptive dynamics,
and quantitative genetics to obtain the condition of evolutionary
branching in deme structured populations. Using a Gaussian
moment closure approximation, the condition for disruptive
selection will be expressed analytically. To describe the effect of
population structure on selection, we will extend standard coales-
cence arguments to a quantitative genetics framework.

This paper is organized as follows. We first describe the
biological framework of our deme-structured population model
and present results of our individual-based simulations as moti-
vating examples. When the migration rate is low, mutant-mutant
interactions are more likely to occur and the evolutionary
dynamics can be different from that in well-mixed population.
By simulation, we first find the threshold migration rate below

which evolutionary branching does not occur, illustrating the
importance of spatial structure for branching. We then present
our mathematical analysis of the condition for evolutionary
branching and we finally perform a detailed comparison between
simulation results and analytic predictions.

2. Model and analysis

2.1. Main assumptions

We consider a spatially structured population consisting of Nd

islands (demes), each of size N, thus summing up to NT¼Nd N adult
haploid individuals in total. Each individual i in deme k has a
genetically determined continuous trait value zki. Individuals play
games and the payoffs determine their fecundity. We assume that
a large number of juveniles are produced by each adult, and that a
fraction of them disperses randomly to another deme. Adults die
with a constant probability and juveniles compete on each deme
for the vacated spots so that exactly N individuals in each deme
form the next generations of adults. No other exact assumption
about social interactions, reproduction, competition, and dispersal
is done at this stage (but later for applications). The model can
thus take independent demic extinction (or catastrophes) into
account so as to capture meta-population processes.

2.2. A preliminary simulation result

Before carrying out our derivation of moment dynamics, we
present a motivational example satisfying our assumptions and
illustrating the role of spatial structure for branching. We run
individual-based simulations of a pairwise non-linear public goods
game (Doebeli et al., 2004) played within demes under a Wright–
Fisher updating scheme with standard infinite island model of
dispersal assumptions, where the migration rate is m (Fig. 1; for
simulation details see Section 4). When the migration rate is
relatively large (m ¼0.6), the evolutionary dynamics was similar
to that in a well-mixed population, and branching occurred as
soon as the trait evolved to reach the convergence stable (CS)
value zn (Fig. 1a). For m¼0.4, branching still occurred but the
dynamics was more stochastic (Fig. 1b). For m¼0.2, branching was
never observed (Fig. 1c). These simulation results clearly illustrate
the importance of spatial structure, implying the existence of a
threshold migration rate, mn, below which evolutionary branching
does not occur. One practical goal of our analysis is to give an
analytical prediction on this threshold migration rate. We will now
derive approximations for the dynamics of the mean and variance
in trait value under our population assumptions.

2.3. Mean trait dynamics to the 1st-order effect of selection

We write the fitness of individual i in deme k (expected
number of adult offspring produced) as a function wkiðzÞ of the
full trait distribution z : ¼ ðz11; z12;…; zNdNÞ in the population (see
below for examples). The expectation of the mean trait value in
the next generation is given by

E½ztþ1jzt ¼ z� ¼ 1
NT

∑
Nd

k ¼ 1
∑
N

i ¼ 1
zkiwkiðzÞ ð1Þ

When the trait distribution is narrow around the mean
z : ¼ ð1=NT Þ∑k∑izki, the deviation δki : ¼ zki�z is small and the
fitness function can be approximated by a 1st-order Taylor
expansion about the mean:

wkiðzÞ ¼wkiðzÞþwki;kiδkiþ ∑
ja i

wki;kjδkjþ ∑
lak

∑
j
wki;ljδlj ð2Þ
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