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H I G H L I G H T S

� Serial killers' inter-murder intervals follow a power law with an exponent of �1.5.
� We hypothesize that they murder when neuronal excitation exceeds a threshold.
� We model this neural activity as a branching process.
� Simulations of our model agree with experimental data.
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a b s t r a c t

We analyze the time pattern of the activity of a serial killer, who during 12 years had murdered 53 people. The
plot of the cumulative number of murders as a function of time is of “Devil's staircase” type. The distribution of
the intervals between murders (step length) follows a power law with the exponent of 1.4. We propose a
model according to which the serial killer commits murders when neuronal excitation in his brain exceeds
certain threshold. We model this neural activity as a branching process, which in turn is approximated by a
random walk. As the distribution of the randomwalk return times is a power law with the exponent 1.5, the
distribution of the inter-murder intervals is thus explained. We illustrate analytical results by numerical
simulation. Time pattern activity data from two other serial killers further substantiate our analysis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fig. 1 shows a time-plot of the cumulative number of murders
committed by Andrei Chikatilo (Krivich and Ol'gin, 1993) during his
12-year activity. It is highly irregular with long time intervals without
murder interrupted by jumps, when he murdered many people
during a short period. Such a curve is known in mathematics as
a “Devil's staircase” (Mandelbrot, 1983). We can characterize the
staircase by the distributions of step lengths. Fig. 2 shows such
distributions for the staircase of Fig. 1 in log–log coordinates. A linear
fit shows that the exponent of the power law of the probability
density distribution (in the region of more than 16 days) is 1.4.

Recently Osorio et al. (2009) reported a similar power-law
distribution (with the exponent 1.5) of the intervals between
epileptic seizures. Soon afterward they proposed (Osorio et al.,
2010) a self-organized critical model of epileptic seizures. They
performed numerical simulations of their model and reproduced
a power-law distribution of inter-seizure intervals. Almost simulta-
neously we proposed a stochastic neural network model of epileptic

seizures (Simkin and Roychowdhury, 2010), which was very similar
to that of Osorio et al. (2010). Unlike them, however, we solved our
model analytically. Here we apply a similar model to explain the
distribution of intervals between murders.

2. The model

We make a hypothesis that, similar to epileptic seizures, the
condition, causing a serial killer to commit murder, arise from the
simultaneous firing of large number of neurons in the brain. Our
neural net model for epileptics (Simkin and Roychowdhury, 2010)
and serial killers is as follows. After a neuron has fired, it cannot fire
again for a time interval known as the refractory period. Therefore,
the minimum interval between the two subsequent firings of a
neuron is the sum of spike duration and refractory period. This
interval is few milliseconds and we will use it as our time unit.
Consider one particular firing neuron. Its axon connects to synapses
of thousands of other neurons. Some of them are almost ready to
fire: their membrane potential is close to the firing threshold and the
impulse from our neuron will be sufficient to surpass this threshold.
These neurons will be firing at the next time step and they can be
called “children” of our neuron in the language of the theory of
branching processes (Simkin and Roychowdhury, 2011). Since the
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number of neurons connected to a given neuron is large and since
each firing neuronwill independently induce the firing of each of the
neurons connected to it with a small probability, the number of
firings induced by one firing neuron is binomially distributed with a
large number of trials and a small success probability, which can be
approximated by a Poisson random variable. In addition to induced
firings, some neurons will fire spontaneously. We assume that the
number of spontaneously firing neurons at each time step comes
from a Poisson distribution with mean p.

Let us introduce the following random variables:

Xn¼number of firing neurons at time n.
Yn¼number of spontaneously firing neurons at time n.
Zn,j¼number of firings induced by the jth firing neuron
at time n.

Then, the process (Xn) defines a discrete-time Markov chain
which we obtain by assuming that the two collections of random
variables Yn and Zn,j are collections of independent Poisson random
variables with mean p and λ, respectively, and by setting

Xnþ1 ¼ Zn;1þ⋯þZn;XnþYnþ1

The above equation can be rewritten as (here E (…) denotes the
expectation value)

Xnþ1 ¼ EðZn;1þ⋯þZn;XnÞþEðYnþ1Þ

þðZn;1þ⋯þZn;Xn�EðZn;1þ⋯þZn;XnÞÞ

þYnþ1�EðYnþ1Þ ð1Þ
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Fig. 1. Chikatilo's staircase shows how the total number of his murders grew with time. The time span begins with his first murder on 12/22/1978 and ends with his arrest
on 10/20/1990. The shortest interval between murders was three days and the longest—986 days. The murder dates were determined based on the date on disappearance of
the person in question.

1

10

100

1000

10000

1 10 100
rank

nu
m

be
r o

f d
ay

s 
be

tw
ee

n 
m

ur
de

rs
 

simulation

actual data

0.00001

0.0001

0.001

0.01

0.1

1
1 10 100 1000 10000

number of days between murders
pr

ob
ab

ili
ty

 d
en

si
ty

simulation

actual data

Fig. 2. Distribution of step length (intervals between murders) in Zipfian (a) and probability density (b) representations.
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