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Geometric phase shifts in biological oscillators

HIGHLIGHTS

e [t is not well understood how cell division events affect biological oscillations.

e | demonstrate that a geometric phase shift may arise during the cell cycle.
e This can perturb circadian control and cause asynchrony between cells.
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Many intracellular processes continue to oscillate during the cell cycle. Although it is not well-understood
how they are affected by discontinuities in the cellular environment, the general assumption is that
oscillations remain robust provided the period of cell divisions is much larger than the period of the
oscillator. Here, I will show that under these conditions a cell will in fact have to correct for an additional
quantity added to the phase of oscillation upon every repetition of the cell cycle. The resulting phase shift is
an analogue of the geometric phase, a curious entity first discovered in quantum mechanics. In this letter, I

will discuss the theory of the geometric phase shift and demonstrate its relevance to biological oscillations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Rhythmic cycles of gene expression underpin oscillatory pro-
cesses that occur in biology with periods ranging from several years
to a fraction of a second (Goldbeter, 1996). At the cellular level,
oscillatory phenomena are controlled by molecular regulators that
form a network of positive or negative feedback loops (gene
circuits). Positive and negative regulators, which increase and
decrease gene expression respectively, are usually protein factors
whose activities are in turn regulated during transcription, or at a
later, post-translational stage. For example, transcription factors
CLOCK and BMALT1 regulate the levels of mRNA in the mammalian
circadian clock (Reppert and Weaver, 2002), and the E3 ubiquitin
ligase Mdm2 controls oscillations of the tumour suppressor p53
(Lahav et al., 2004). Computational and mathematical methods
have been used to study these mechanisms (reviewed in Goldbeter,
2002) since understanding how biological oscillations function on
the molecular scale is essential for explaining the dynamics of a cell.
In addition, today's research needs to address how the loss of
circadian control contributes to disease at the level of an organism.

In a recent article, Gonze (2013) questioned the robustness of
molecular oscillations that occur concomitantly with the cell cycle. It
was pointed out that most circadian clock and gene circuit models do
not satisfactorily account for discontinuities in the cellular environ-
ment, since biological oscillations must also perpetuate across repeti-
tive cell divisions (Elowitz and Leibler, 2000; Mihalcescu et al., 2004).
Adopting a numerical approach, Gonze demonstrated the influence of
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cell cycle-related effects on two popular non-linear oscillators, the
Repressilator model (Elowitz and Leibler, 2000) and the Goodwin
(1965) model. He found that although robustness diminishes for
smaller periods of the cell cycle, oscillations remain relatively robust
provided that the period of the cell division is much larger than the
period of the oscillator (Gonze, 2013).

It is the purpose of this letter to describe an effect that
manifests itself on a clock (from now on ‘clock’ will refer to any
general circadian clock or gene circuit) exactly when the oscilla-
tion is considered most robust by the analysis of Gonze. More
precisely, an effect that arises when the period of the cell cycle is
large compared to the period of oscillations, causing the cellular
environment to change adiabatically with respect to the molecular
components of the clock. Under these conditions, a classical
analogue of the quantum geometric phase, Hannay's angle, may
be realised in a given clock system and require the cell to correct
for an additional quantity added to the phase of oscillation upon
every repetition of the cell cycle. Here, I will discuss the theory of
geometric phase shifts and their relevance to biological systems,
suggest under what conditions they may be detected, and derive
Hannay's angle for two different versions of the Goodwin model.

2. The classical geometric phase shift

Existence of the geometric phase shift in quantum mechanics
was first noted by Berry (1984) and almost immediately realised to
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be a holonomy also present in other dynamical systems (Simon,
1983; Berry, 1985; Hannay, 1985). A holonomy is an intrinsic
property associated with any curved space, the classical example
being the holonomy of the unit sphere. This holonomy is realised if
one is to take a vector tangential to the sphere at a given starting
point (think of a pen held on the surface of a volleyball) and then
transport it around a closed loop on the surface, keeping the
vector parallel to the direction of transport at every point. After
completing the closed path the vector returns to its original point,
but will be rotated with respect to the direction it was pointing at
the beginning of the journey. The angle of rotation is proportional
to the area of the surface bounded by the path and scales with the
size of the loop. It does not depend on the time taken to complete
the cycle.

In Hamilton's formulation of conservative mechanics, the
equations of motion describing the time evolution of a system
are derived from the Hamiltonian H. This is a function of general-
ised coordinates Q, momenta P, and some constant parameters
denoted by R. Oscillatory systems trace out an ellipse of area 2z1 in
(Q, P) phase space, and so it is convenient to make a canonical
change of coordinates to action-angle variables (I,0) so that the
equations of motion become
df oH dl oH
E:E:const:a)o, ai= a0
Action-angle variables are particularly useful because frequencies
@y of the oscillation can be obtained without ever having to solve
the equations of motion.

Hannay (1985) asked what would be the effect of making the
parameters dependent on time, so that the vector R is slowly
transported around a closed loop in parameter space (slow with
respect to the period of oscillations). By the assumption of
adiabaticity, the period 7 : R(t)=R(t+7) would be much larger
than the period of a single orbit in (Q, P) phase space, and although
the path changes as the parameters are varied, the area I enclosed
by that path would remain the same. It turns out that after such a
time 7, the angle variable @ is given by the anticipated dynamical
term (arising from the fact that @ is continually making orbits
around the curve in phase space) plus an additional term A#
depending only on the circuit in parameter space and not the
duration of the process:

=0. 1)

O(r) = 0(0)+ /01 wo dt+ A6 )

For an adiabatic excursion, dI/dt=0, but now the equation of
motion for @ is given by

dd oH dR/oH
ar = E+E<0_R>’ 3
where the angled brackets denote the contained quantity averaged
over a single period. Consequently, Hannay's angle is given by

“dR /oH oH
2= [ a2 f () @

The fact that the additional phase angle A@ had lain undiscov-
ered in classical mechanics for more than a century came as a
great surprise to modern physicists. Together with Berry's phase it
arises as a purely geometric effect of making a non-trivial loop in
parameter space and is closely related to the example of the
sphere described above. Shortly after its discovery, Kepler and
Kagan (1991) and Kagan et al. (1991) demonstrated that time-
independent geometric phase shifts also occur in dissipative
systems, such as the Belousov-Zhabotinsky chemical reaction,
which cannot be described by a Hamiltonian.

Realising geometric phase shifts that are present in dissipative
systems has deep implications for biology, which by its very nature

is a complicated chemical process operating far from equilibrium.
The geometric phase shift would become relevant to a biological
oscillator if there exists a mechanism that transports parameters
describing the cellular environment around a closed loop in para-
meter space. Remarkably well-suited to this task, the cell cycle
provides a natural way in which the environment changes adiaba-
tically before returning to an initial state after each cell division
event. Every repetition of the cell cycle causes variations in
degradation, transcription and translation rates (usually assumed
to be constant in oscillator models) that could give rise to a
geometric phase shift in the oscillations of a molecular clock. In
the next section I will demonstrate this to indeed be the case.

3. Geometric phase shifts induced by the cell cycle

In the first half of this section I will derive an exact expression
for Hannay's angle corresponding to a simple version of the
Goodwin model. In doing so, one finds an interesting relationship
to be satisfied between expression and degradation rates when A&
is to contribute to the phase of an oscillation. In the second half I
will consider a more complicated Goodwin model involving
protein—protein interactions for which the existence of a geo-
metric phase shift will be demonstrated through numerical
simulation. This second Goodwin model cannot be described by
a Hamiltonian, and is therefore an example of a dissipative process
common to many biological systems.

Goodwin (1965) proposed several models for different biologi-
cal oscillators, the simplest of which can be described by a
Hamiltonian H, a function of mRNA concentration X and protein
concentration Y. The linearised version of this model is
%:—%:%ﬂ—kﬁ—b, ‘%:%:ax—ﬂ, (5)
where the degradation rates b, # and expression rates a,A, k, a are
understood to make up a set of constant parameters R on which H
depends. Goodwin used this system of equations to describe a
closed negative feedback loop that exhibits oscillatory behaviour
under the correct choice of R.

To account for cell cycle effects in the linear Goodwin model it
is necessary to make degradation and expression rates vary
periodically in time. That is, R(t) =R(t+7), where 7 is the time
taken to complete one round of the cell cycle. This means the
equations become notoriously difficult to solve for arbitrary
parameters. However, after making the substitutions

1 ak , a da

a
a= o B:/z, aP:w, ——b———==F, (6)

the Hamiltonian H(t) transforms into
R I R I du M
H(t)_m(X +w"MY?)— E—H: Y_MX’ 7)

which is the Hamiltonian of a classical harmonic oscillator for
which action-angle variables (I,6) are known (Song, 2000). A
second order equation of motion (independent of X) can be
obtained for Y, and is satisfied by a linear combination of a
particular solution Y, and two linearly independent solutions

Y1,Y, of the homogeneous equation. Defining p = /Y2 +Y2 and

Q=M(Y,—YY;), where the dot denotes differentiation of a
solution with respect to time, it can been shown that (I,0) are
given by the relations

1

I:m

@ d
7(Y—yp)2+Md—'f(y—yp)— PX—MY,— /1)2}, 8)
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