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H I G H L I G H T S

� Methods are developed to design optimal experiments to ensure model parameter identifiability.
� We give sufficient conditions to identify parameters in linear, diagonalizable ODE models of experiments.
� A framework for proving identifiability in linked models is demonstrated.
� Applications to experimentally common situations and measurement protocols are shown.
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a b s t r a c t

A key problem in the biological sciences is to be able to reliably estimate model parameters from
experimental data. This is the well-known problem of parameter identifiability. Here, methods are
developed for biologists and other modelers to design optimal experiments to ensure parameter
identifiability at a structural level. The main results of the paper are to provide a general methodology
for extracting parameters of linear models from an experimentally measured scalar function – the
transfer function – and a framework for the identifiability analysis of complex model structures using
linked models. Linked models are composed by letting the output of one model become the input to
another model which is then experimentally measured. The linked model framework is shown to be
applicable to designing experiments to identify the measured sub-model and recover the input from the
unmeasured sub-model, even in cases that the unmeasured sub-model is not identifiable. Applications
for a set of common model features are demonstrated, and the results combined in an example
application to a real-world experimental system. These applications emphasize the insight into
answering “where to measure” and “which experimental scheme” questions provided by both the
parameter extraction methodology and the linked model framework. The aim is to demonstrate the
tools' usefulness in guiding experimental design to maximize parameter information obtained, based on
the model structure.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction and background

Linear systems of ordinaryQ4 differentialQ5 equations (ODEs) are a
widely applied tool used for modeling of biological systems to
generate hypotheses for experimental testing. Linear models are
used in fields such as molecular cell biology to investigate endocytic
traffic and sorting (Ghosh et al., 1994; Sheff et al., 2002; Henry and
Sheff, 2008) and phosphoinositide transformation in endocytosis

(Belward et al., 2011), and systems biology to study physiology
(Cobelli and DiStefano, 1980), gene expression (Crampin, 2006) and
regulatory networks (de Jong, 2002). The rapid advance of technol-
ogies, such as fluorescent microscope imaging technologies which
allow imaging of the behavior of multiple proteins at multiple
locations in live cells to be quantified and analyzed, have given
access to large amounts of data which can be used for robust model
development and validation (Hamilton, 2009), and has already lead
to breakthroughs in understanding major diseases such as Parkin-
son's Disease (Follett et al., 2014). The rise in the use of mathematical
modeling in biological fields brings with it pitfalls which are to be
avoided. Often such models include large numbers of parameters
which are impractical to measure individually, and must be inferred
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from their effect on the system, using data sets which can be
incomplete and noisy (Ghosh et al., 1994; Sheff et al., 2002; Voit et
al., 2006; Henry and Sheff, 2008; Berthoumieux et al., 2011). The
problem of parameter estimation for linear and non-linear ODE-
based models has been extensively studied from a variety of
perspectives, for example, applied mathematics (Liu et al., 2011)
and systems biology (Jaqaman and Danuser, 2006; Ashyraliyev et al.,
2009). Complicating the process of parameter estimation is the idea
of parameter identifiability, that is, whether different combinations
of parameter values lead to indistinguishable model output, both in
terms of inherent model structure (structural parameter identifia-
bility) and due to experimental noise (practical parameter
identifiability) (Bellman and Åstrom̈, 1970; Cobelli and DiStefano,
1980; Holmberg, 1982; Chou and Voit, 2009; Nikerel et al., 2009;
Chen et al., 2010; Berthoumieux et al., 2012).

Approaches to dealing with identifiability have been developed
for a variety of modeling situations. The structural identifiability
problem (defined precisely below) is more fundamental than the
practical identifiability problem, in that it represents a best-case
scenario for any practical identifiability analysis, and also more
analytically tractable, with well-defined approaches for linear
(Bellman and Åstrom̈, 1970; Cobelli and DiStefano, 1980) and
many non-linear models (Pohjanpalo, 1978; Jaqaman and
Danuser, 2006; Bellu et al., 2007; Nemcova, 2010; Chis et al.,
2011). The problem of practical identifiability, which considers
whether experimental noise will allow parameters that may be
structurally identifiable to be resolved to a level of certainty, is
generally approached by developing confidence intervals for
estimated parameters and considering the parameter space of an
objective function near solutions, either using quadratic approx-
imations or numerical methods (Cobelli and DiStefano, 1980; Raue
et al., 2009, Berthoumieux et al., 2012). Bayesian frameworks have
also be used to represent parameter uncertainty and model
sensitivity to parameter values (Liepe et al., 2013). Practical
identifiability of biological systems is a difficult problem, as
illustrated by a study (Gutenkunst et al., 2007) where it was found
that biological systems show degrees of sensitivity distributed
fairly evenly over multiple orders of magnitude to changes in
different independent combinations of parameters, with highly
sensitive parameters being difficult to constrain with even large
amounts of data.

There are intuitive gaps in the underlying causes of both
structural and practical identifiability. Although practical identifia-
bility is fundamentally a problem of experimental noise, under-
standing model sensitivity to parameter variation in most cases
involves performing complex analytical and often numerical
calculations. In the case of structural identifiability, many of the
analytic approaches allow the straight-forward computation of the
binary identifiability/non-identifiability of model parameters on a
case-by-case basis; however it is often the case that these
approaches miss a broad intuition of what underlying mechanics
of models allows or does not allow the determination of the
parameters.

A related issue to parameter identifiability is experimental
design optimization, that is, how to maximize information
obtained from measurements. An effort has been made (Liepe et
al., 2013) to address this problem using a Bayseian framework as a
general computational method for optimizing experiments. An
analytical approach to both parameter identifiability and experi-
mental design problems could provide several advantages over
computational methods, by providing fine-grained feedback on
how parameters affect outputs under a wide range of conditions,
and lead to intuitive rule-of-thumb guidance for experimental
design.

Here, theorems applicable to broad classes of biological struc-
tural parameter identifiability problems are proved. In Section 2.1,

new methods are developed which consider the underlying
mechanics of models and how they are captured by experimental
design, allowing the development of measurement schemes to
efficiently extract parameter information. These methods are
demonstrated with applications to a range of commonly used
models (see figures) to design experimental schemes to optimize
the identification of model parameters. In Section 2.2 a framework
for constructing complex models by considering the outputs of
components of simple model classes as inputs to other models to
create linked models is outlined. By considering the problem of
identifying the combined model, it is shown that under certain
conditions the component models can effectively be distinguished,
and structural identifiability results for the individual models
when not linked also hold for the corresponding components of
the combined model. It is also shown that even when components
of the models are “hidden“ from measurement much can often be
inferred about the hidden parts from the measurable components.
This linked model framework is also applied to a range of
commonly used model configurations, which are in turn used to
analyze a realistic biological system.

The specific focus of the paper is on the broad family of
mathematical models, linear systems of ordinary differential
equations (ODEs). Cobelli and DiStefano (1980) and Raue et al.
(2011) give good overviews of modeling using linear systems of
ODEs in the context of physiological systems and gene signaling
networks respectively, fields where linear models have been
widely and successfully applied. Following a similar framework,
here we will consider models that have the following linear
general form:

d
dt
xðtÞ ¼AxðtÞ ð1Þ

for a model state vector x with n components. The initial state of
the model is specified by the length n vector x(0)¼b and the
model structure by the constant n� n matrix A. The vector of m
model observables is given by

yðtiÞ ¼ CxðtiÞþεi ð2Þ

where εi is a length m vector of measurement noise assumed to be
normally distributed. C is an m� n non-negative matrix with each
row defining the combinations of model locations measured in a
corresponding experimental data set.

The model structure A and the initial state b are functions on
the parameters θ of the model. A is dependent on a set of constant
parameters k (rate constants) that denote the rates at which the
model components interact and together with an independent
initial state b make up the parameters θ. For example, in cell
protein trafficking models (Ghosh et al., 1994; Sheff et al., 2002;
Henry and Sheff, 2008) the model parameters consist of rate
constants at which a protein of interest is trafficked between
compartments (such as endosomes) in the cell, as well as initial
concentrations of the protein in the compartments. In enzyme
reaction models such as those used by Raue et al. (2011), the
model parameters are the rates at which the presence of enzymes
inhibit or accelerate the production of other enzymes, as well as
initial concentrations. The model states represent the concentra-
tion of protein in the intracellular compartments, or the enzyme
concentrations in a solution, for example within a cell cytoplasm,
or an organism's blood stream. An often used experimental set-up
(Bellman and Åstrom̈ 1970; Cobelli and DiStefano, 1980; Henry and
Sheff, 2008) is a pulse or tracer input at a single location, which
is then measured over time at other locations. In terms of
Eqs. (1) and (2) this corresponds to an initial state b¼bieiT for
the pulse location i, where ei is a standard basis vector (1 in the ith
component and zeros elsewhere), and bi denotes the size of the
input. Another example set-up is a fill/release method, where a
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