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H I G H L I G H T S

� The parametric space of an acute inflammation model was analyzed using global sensitivity analysis (GSA).
� GSA suggested the importance of IL-6 and NO in affecting inflammatory damage.
� Increasing IL-6 leads to transition from low to high sustained damage.
� At high IL-6, NO produced by macrophages can still repress overall damage.
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a b s t r a c t

The precise inflammatory role of the cytokine interleukin (IL)-6 and its utility as a biomarker or
therapeutic target have been the source of much debate, presumably due to the complex pro- and anti-
inflammatory effects of this cytokine. We previously developed a nonlinear ordinary differential
equation (ODE) model to explain the dynamics of endotoxin (lipopolysaccharide; LPS)-induced acute
inflammation and associated whole-animal damage/dysfunction (a proxy for the health of the
organism), along with the inflammatory mediators tumor necrosis factor (TNF)-α, IL-6, IL-10, and nitric
oxide (NO). The model was partially calibrated using data from endotoxemic C57Bl/6 mice. Herein, we
investigated the sensitivity of the area under the damage curve (AUCD) to the 51 rate parameters of the
ODE model for different levels of simulated LPS challenges using a global sensitivity approach called
Random Sampling High Dimensional Model Representation (RS-HDMR). We explored sufficient para-
metric Monte Carlo samples to generate the variance-based Sobol’ global sensitivity indices, and found
that inflammatory damage was highly sensitive to the parameters affecting the activity of IL-6 during the
different stages of acute inflammation. The AUCIL6 showed a bimodal distribution, with the lower peak
representing healthy response and the higher peak representing sustained inflammation. Damage was
minimal at low AUCIL6, giving rise to a healthy response. In contrast, intermediate levels of AUCIL6
resulted in high damage, and this was due to the insufficiency of damage recovery driven by anti-
inflammatory responses from IL-10 and the activation of positive feedback sustained by IL-6. At high
AUCIL6, damage recovery was interestingly restored in some population of simulated animals due to the
NO-mediated anti-inflammatory responses. These observations suggest that the host's health status
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during acute inflammation depends in a nonlinear fashion on the magnitude of the inflammatory
stimulus, on the host's propensity to produce IL-6, and on NO-mediated downstream responses.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Modeling acute inflammation

Acute inflammation is the initial response of the body to various
biological stresses, including bacterial infection and tissue injury.
Inflammation is a multi-scale process manifesting at the molecular,
cellular, tissue, organ, and whole-organism levels. The action of
immune cells and secreted molecules combat the offending insult
and also trigger a repair process to allow the body to return to pre-
insult homeostasis. Properly regulated inflammation allows for
timely recognition and effective reaction to injury or infection, but
diseases such as sepsis involve disordered inflammation that in turn
impairs physiological functions (An et al., 2012; Vodovotz and
Billiar, 2013).

The complex, non-linear nature of inflammation has made it
difficult to directly translate results from animal studies to clinical
trials (Neugebauer et al., 2001; Vodovotz and Billiar, 2013;
Vodovotz et al., 2008). Several computational representations
of the acute inflammatory response developed in the recent
years have provided tools for gaining insights into and making
testable predictions of this complex biological process (Parker
and Clermont, 2010; Vodovotz and An, 2009; Vodovotz and Billiar,
2013; Vodovotz et al., 2004, 2008, 2009). Various frameworks have
been used successfully to represent inflammation computation-
ally; for example, equation-based models such as difference and
differential equations (Scheff et al., 2013; Vodovotz and Billiar,
2013; Vodovotz et al., 2004, 2009), data-driven models (An et al.,
2012; Croft et al., 2012; Vodovotz and Billiar, 2013; Vodovotz et al.,
2009), and agent-based models (An et al., 2012; Vodovotz and An,
2009; Vodovotz and Billiar, 2013). Differential equation-based
representations can adequately address the complex, non-linear,
dynamic interactions characterizing a well-mixed system, espe-
cially when such models are based on data obtained in bio-fluids
such as serum or plasma (An et al., 2012; Scheff et al., 2012).

1.2. Analysis of large-scale ODE models for inflammation

1.2.1. Current models of acute inflammation
In our earlier models of acute inflammation, we studied the role

of a small number of key mediators using techniques such as
bifurcation analysis (Kumar et al., 2004; Reynolds et al., 2006). With
further advances in experimental models of inflammation, species-
specific parameters were determined to explain differences in the
dynamics of inflammation with changes in the sources of inflam-
mation as well as the primary drivers of inflammation (Daun et al.,
2008b; Nieman et al., 2012; Vodovotz et al., 2006). This led to large-
scale ODE models containing a large number of distinct mediators
as well as local and systemic compartments (Chow et al., 2005;
Nieman et al., 2012; Torres et al., 2009). These models have been
successful in explaining the dynamics of various mediators as well
as the identification of processes responsible for various clinical
outcomes of inflammation (Nieman et al., 2012; Vodovotz and
Billiar, 2013; Vodovotz et al., 2008).

1.2.2. Analyzing ODE behavior using sensitivity analysis
Inflammation can either resolve or become self-sustaining,

depending on a complex interaction between the original insult
and host factors (Medzhitov, 2008; Nathan, 2002). Analysis and

extraction of key mechanisms that drive inflammation into differ-
ent clinically relevant regimes, however, has been difficult for
high-dimensional ODE models. The challenges arise from two
sources, namely the uncertainty of the model parameters and
the computational burden of exploring the influence of a large
number of parameters and their correlations. To overcome these
challenges, large-scale ODE models have to employ supplementary
tools like sensitivity and uncertainty analysis, model identifiability
analysis and parameter set reduction in the modeling loop (Chu
and Hahn, 2012; Jayaraman and Hahn, 2009; Kiparissides et al.,
2011; Vodovotz et al., 2009).

Sensitivity analysis (SA) is an increasingly important step in
this process and is often the first step in learning the nature of
different parameters in the model (Marino et al., 2008; Sahle et al.,
2008; Saltelli et al., 2008). SA can also guide other processes like
parameter estimation in the modeling loop by providing impor-
tance measures to the model parameters (Kiparissides et al.,
2009). In general, SA can be carried out by two approaches: local
and global. Local methods study the influence of single parameter
in isolation and the other parameters are kept constant at their
nominal values. Global methods study the influence of a para-
meter by varying it in a defined direction and also simultaneously
varying the other parameters in a random fashion in the entire
parameter space (Saltelli et al., 2008). While local methods are
valid near the nominal region of the parameter space, global
methods are independent of the nominal values and also provide
a complete mapping of the input–output (IO) behavior of the
model (Sobol0, 2001). Given the nature of large-scale inflammation
models, it is necessary to apply global sensitivity analysis (GSA)
tools to identify and validate key mechanisms predicted by the
models. These methods also hold the potential to help in the
classification of mechanisms that can lead to clinically distinct
outcomes such as resolution vs. self-maintenance of inflammation.

The traditional methods of GSA are variance decomposition
schemes and they employ computationally expensive exploration
of the parameter space using different sample generation techni-
ques (Sobol0, 2001). Sobol’ and FAST algorithms are two popular
techniques for variance-based GSA (Saltelli et al., 1999). The
advantages of these algorithms are, however, challenged by the
large number of Monte Carlo (MC) samples (Z105) necessary for
complete identification of the IO space of the model (Sobol0, 1998).
This aspect renders the use of a detailed parametric analysis of the
large-scale ODE expensive, and thereby restricts the modeler to
fairly simple local analysis.

The computational cost for evaluating GSA can be reduced in
two ways: reducing the time required for evaluating the model at
a single point in the parameter space, and reducing the number of
samples required for GSA. A common method is model order
reduction, which employs various approximations to “reduce” the
original complex ODE model to a reduced set of ODEs containing
only key model species (Hahn and Edgar, 2002; Okino and
Mavrovouniotis, 1998; Schilders et al., 2008). These approxima-
tions may employ lumping of the species, removal of non-sensitive
species, or quasi steady state assumptions of the fast time-scale
reactions (Okino and Mavrovouniotis, 1998). An alternate strategy
is the meta-modeling approach, which “replaces” the entire
complex ODE model with a set of approximation functions that
capture accurate model dynamics over a prescribed parameter
space (Barton, 1992, 1998). The essential difference between the
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