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H I G H L I G H T S

� The dynamics of three interacting cell populations of tumor cells, healthy host cells and immune effector cells is discussed.
� Transient chaotic behavior for a certain choice of parameters takes place before extinction of healthy and immune cells.
� The method of partial control is applied to avoid the extinction of the healthy tissue.
� The difficulties of applying such control method at the present state-of-the-art of cancer therapies are discussed.
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a b s t r a c t

We consider a dynamical model of cancer growth including three interacting cell populations of tumor
cells, healthy host cells and immune effector cells. For certain parameter choice, the dynamical system
displays chaotic motion and by decreasing the response of the immune system to the tumor cells, a
boundary crisis leading to transient chaotic dynamics is observed. This means that the system behaves
chaotically for a finite amount of time until the unavoidable extinction of the healthy and immune cell
populations occurs. Our main goal here is to apply a control method to avoid extinction. For that purpose,
we apply the partial control method, which aims to control transient chaotic dynamics in the presence of
external disturbances. As a result, we have succeeded to avoid the uncontrolled growth of tumor cells
and the extinction of healthy tissue. The possibility of using this method compared to the frequently used
therapies is discussed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer is the result of an uncontrolled proliferation of tumor cells
within a tissue that eventually can spread to new locations in the
body. The loss of cooperative behavior of cancer cells arises as a
consequence of accumulated mutations, and yields a complex evolu-
tionary scenario in which tumor and healthy cells compete for space
and scarce resources. Mathematical modeling has proven to be a
useful tool for the understanding of many features concerning the
complex interactions between tumor and healthy cells (Bellomo et al.,
2008; Bajzer et al., 1996; Kuznetsov et al., 1994; d'Onofrio, 2005).
Based on how the tumor tissue is represented, a vast number of
cancer growth models fall into two main categories: discrete models
and continuum models. The discrete cell based models are capable of
describing biophysical processes in significant detail, considering the
individual cells governed by a precise series of rules. However, for
large-scale-systems, this method is very demanding and requires

sophisticated computer simulations. An alternative to discrete meth-
ods is provided by the continuum approach, where tumors are treated
as a collection of tissue, considering, among other possible elements,
the description of densities or cell volume fractions and cell substrate
concentrations. More particularly, carcinogenesis population-based
models have often been used to study different aspects of tumor
progression and settle therapy protocols (Sachs and Hlatky, 2001;
Kirschner and Panetta, 1988; De Pillis and Radunskaya, 2003; De Pillis
et al., 2005, 2006; Pinho et al., 2002; Nani and Freedman, 2000;
Placeres Jiménez and Hernández, 2011; Freedman and Pinho, 2009;
Panetta and Adam, 1995). Among these works some use ODE models,
and frequently divide the problem into two clearly differentiated
parts. The first one sets and describes the model itself, which
generally consists of some Lotka–Volterra equations describing
growth and death of cell populations, as well as competition between
them. The second part is devoted to establish a treatment protocol,
mainly chemotherapy, immunotherapy or radiotherapy, to reduce the
tumor population in an optimal manner. Even though most of these
models deal with more than two dimensions, not many of them (Itik
and Banks, 2010; Letellier et al., 2013; Saleem and Agrawal, 2012;
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Ahmed, 1993) have seriously considered the situation in which
cell populations behave in a chaotic fashion. From our point of
view, the main reason why this occurs is that, in spite of the fact
that there is experimental evidence of deterministic chaos in tumor
cell populations (Wolfrom et al., 2000), in general evidence is not
abundant and clear enough. Although chaotic dynamics of a growing
tumor seems to be uncommon, it is more probable to appear when
therapies are considered. Therefore, we think that chaos should not be
disregarded in the study of tumor progression. In particular, as far as
we are concerned, no one has mentioned the possibility of finding
transient chaos in the populations of these tumor models. We believe
that, since complex interactions take place between neoplastic,
stromal and immune response cells, it is likely for transient
chaotic dynamics to happen before tumor dominates the struggle.
On the other hand, several methods to control transient chaos have
been proposed along the last decades (Tèl, 1991; Schwartz and
Triandaf, 1996; Kapitaniak and Brindley, 1998; Yang et al., 1995;
Aguirre et al., 2004). Among them, the partial control method
(Zambrano and Sanjuán, 2009; Sabuco et al., 2009, 2012a, 2012b)
aims to control systems displaying chaotic transients in the presence
of certain external disturbances (usually noise), using smaller controls.
The main idea of partial control is to take advantage of the Cantor set
structure embedded in a region of phase space containing the
remnant of a chaotic attractor to avoid escaping from it by small
perturbations. In this manner, we prevent the occurrence of a
particular dynamics.

The purpose of this work is to show and control the existence
of transient chaotic dynamics for certain values of the parameter
space in a three dimensional cancer model consisting of interact-
ing cell populations, similar to the one used in De Pillis and
Radunskaya (2003), Itik and Banks (2010) and Letellier et al.
(2013). These three populations are the tumor cells, the healthy
host cells and the immune effector cytotoxic T-cells present at the
tumor site. After examining the phase space of the model for the
given parameters, and the boundary crisis leading to transient
chaotic dynamics, the partial control method is applied to avoid
tumor escape and uncontrolled growth, preventing from extinc-
tion of the healthy tissue. We discuss the main difficulties of
applying such control method at the present state of the art of
cancer treatments, as well as some others inherent to chaotic
behavior.

The paper is organized as follows. In Section 2 we describe the
model and discuss a set of parameters for which chaos takes place.
We show the phase space portrait, study the equilibria of the
system and comment the boundary crisis leading to transient
chaotic dynamics. In Section 3 we explain the main features of the
partial control method, and apply it to the cancer model in Section
4, preventing tumor escape. Finally, Section 5 is devoted as usual
to conclusions and discussions.

2. Model description and phase space analysis

2.1. The model

We develop our investigations with a model used in Itik and
Banks (2010) and Letellier et al. (2013). It is the same three
dimensional Lotka–Volterra model than the one described in De
Pillis and Radunskaya (2003), with the only difference that no
constant input of effector immune cells is considered. Such input
can be used to model innate immunity (De Pillis et al., 2005) or an
immunotherapy protocol (Kirschner and Panetta, 1988). Each of
the variables represents a cell population, namely T(t) the tumor
cells, H(t) the healthy host cells near the tumor site, and E(t) the
effector immune cells. The growth of cancer and host cells is
assumed to be logistic with growth rate ri and carrying capacity ki.

Both compete with each other, the competition terms being given
by aij. The production of immune cytotoxic T-cells is triggered by
antigen presenting cells. Assuming that this process occurs at a
enough smaller time scale than the one corresponding to tumor
growth, the stimulation of the immune system by the tumor
specific antigens can be considered to act instantly and modeled
by a Michaelis–Menten law. The immune effector cell production
rate in response to the presence of tumor cells is given by r3, and
the steepness of the response curve is associated to k3, the value of
the tumor cells at which the immune response rate is half of the
maximum production, where the response curve saturates. These
cells only compete with cancer cells and in their absence they die
off with a constant per capita rate d3. Therefore, the system of
differential equations is

_T ¼ r1T 1� T
k1

� �
�a12TH�a13TE

_H ¼ r2H 1�H
k2

� �
�a21HT

_E ¼ r3
ET

Tþk3
�a31ET�d3E: ð1Þ

The nondimensionalization and parameter reduction of this
system are thoroughly studied in Itik and Banks (2010), yielding
the set of equations

_x ¼ xð1�xÞ�a12xy�a13xz
_y ¼ r2yð1�yÞ�a21yx

_z ¼ r3
zx

xþk3
�a31zx�d3z: ð2Þ

2.2. Equilibria of the system

An exhaustive phase space analysis has been carried out in the
previously cited references (De Pillis and Radunskaya, 2003; Itik
and Banks, 2010). In the following, we restrict our attention to a
particular set of parameter values for which the system has a
chaotic attractor close to a boundary crisis. The choice of para-
meters in Eq. (2) is a12 ¼ 0:5, a21 ¼ 4:8, a13 ¼ 1:2, a31 ¼ 1:1,
r2 ¼ 1:20, r3 ¼ 1:291, d3 ¼ 0:1 and k3 ¼ 0:3. The only significant
differences of this setting compared to the one arranged in De
Pillis and Radunskaya (2003) are given by parameters a12 and r3,
which take higher values in the present case. The biological
meaning of this choice is that tumor cells are more aggressive in
their competition with normal cells, and that the recruitment or
response of the immune effector cells due to the presence of
tumor cells is much stronger.

We now describe all the nullclines and equilibria for the
current set of parameters. The fixed points of the system are given
by _x ¼ _y ¼ _z ¼ 0 which yields the set of equations

0¼ xð1�x�a12y�a13zÞ
0¼ yðr2�r2y�a21xÞ
0¼ zððr3�k3a13�d3Þx�a31x2�k3d3Þ: ð3Þ

Nullclines can be read directly from Eq. (3). There is a total of six
nullclines: the x–y, y–z and x–z planes, the plane Π1, represented by
the implicit equation xþa12yþa13z¼ 1, the plane Π2, given by
r2yþa21x¼ r2, and the planesΠ3 andΠ4 for x the constant solutions
of the quadratic equation a31x2�ðr3�k3a13�d3Þxþk3d3 ¼ 0. If we
focus on the positive octant Rþ � Rþ � Rþ , the intersections of the
different nullclines yield six different fixed points xni , as shown in
Fig. 1. We give the numerical values of the fixed points and also
analyze their stability by examining the eigenvalues of the Jacobian at
each of them.

The point xn1 is the origin ð0;0;0Þ, a saddle with two positive
eigenvalues corresponding to the x-axis and the y-axis, and a
negative eigenvalue along the z-axis. The point xn2 ¼ ð0;1;0Þ
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