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H I G H L I G H T S

� Protein–protein interaction networks are used to study toxin targets.
� The toxin targets are analyzed by 12 topological properties in the PPI network.
� The SVM is presented to predict the toxin targets based on topological properties and sequence information.
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a b s t r a c t

Proteins do not exert their function in isolation of one another, but interact together in protein–protein
interaction (PPI) networks. Analysis of topological properties of proteins in the PPI network is very
helpful to understand the function of proteins. However, until recently, no one has ever undertaken to
investigate toxin targets by topological properties. In this study, for the first time, 12 topological
properties are used to investigate the characteristics of toxin targets in the PPI network. Most of the
topological properties are found to be statistically discriminative between toxin targets and other
proteins, and toxin targets tend to play more important roles in the PPI network. In addition, based on
the topological properties and the sequence information, support vector machine (SVM) is used to
predict toxin targets. The results obtained by the jackknife test and 10-fold cross validation are
encouraging, indicating that SVM is a useful tool for predicting toxin targets, or at least can play
complementary roles in relevant areas.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Toxins are important classes of poisonous compounds include
pollutants, pesticides, preservatives, drugs and venoms. With
more and more new toxins are found during the past decades,
the applications of toxins as tools in drug discovery and cellular
biology become an important part of toxin research. The funda-
mental research on toxins and their biological targets is one of the
most attractive topics in descriptions of the mechanism of action,
their metabolism in the human body, their lethal or toxic dose
levels, their potential carcinogenicity, exposure sources and
recommended treatments. Therefore, identification and analysis
of toxin targets are important for both medicine and biology.
The ability to rapidly identify toxin targets has been described
as the most important task of toxicogenomics. Experimental

approaches for identification of toxin targets are time consuming
and expensive. So, developing a fast and effective way to identify
toxin targets by computational methods would be very necessary
for toxicology research (Kavlock et al., 2008). In 2010, Toxin and
Toxin-Target Database (T3DB) (Lim et al., 2010) collected the
existing information for toxins and their targets, which provided
an opportunity for characterizing the common properties of toxin
targets by computational methods (Zhou et al., 2013).

Because the majority of proteins interact with each other for
proper function in a cell, the knowledge about interactions
between proteins is essential for the understanding of molecular
and cellular functions (Chaurasia et al., 2007; Rual et al., 2005;
Stelzl et al., 2005). Therefore, the study of protein–protein inter-
action (PPI) networks provides many new insights into protein
function in the context of a network. With the development in the
high-throughput protein interaction detection technology Yeast
Two-Hybrid (Y2H) technology (Uetz and Hughes, 2000) and the
tandem affinity purification-mass spectrometry technique (TAP-MS)
(Gavin et al., 2002), large-scale data sets of protein–protein
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interactions are created (Brown and Jurisica, 2005; Hermjakob et al.,
2004; Stark et al., 2006; Von Mering et al., 2003; Xenarios et al.,
2000). This provides great opportunities for researchers to elucidate
the process of life activities from the system-level of the PPI
networks. However, most of the PPI networks are too complex to
easily understand. By using graph theoretic concepts to investigate
the topological properties of the PPI networks, this problem can be
overcome. The topological properties have been applied to study
social networks in social sciences (Wasserman and Faust, 1994).
Furthermore, the topological properties are used to evaluate the
properties of the PPI networks. Xu and Li (2006) used five topological
properties to describe disease genes in the PPI networks, the
topological properties were found to be statistically discriminative
between disease genes and non-disease genes. Furthermore, based
on the work of Xu et al., a new topological property was proposed by
Zhang et al. (2010) to calculate the statistical significance. The
dynamic method was used to investigate the topology characteristics
of regulatory network (Ding et al., 2013a). The work of Zhu et al.
showed that the topological properties of drug targets were sig-
nificantly different from those of non-drug-targets in the human PPI
networks (Zhu et al., 2009), and Wang et al. (2011) found these
differences were mainly caused by mir-drug-targets and there was
no difference in topological properties between non-mir-drug-
targets and non-drug-targets. In 2009, 10 topological properties
and 4 sequence properties were used by Hwang et al. to describe
essential genes in the PPI networks (Hwang et al., 2009). There were
significant differences in these properties between essential genes
and non-essential genes. Kotlyar et al. found that there were
significant differences in degree, betweenness and clustering coeffi-
cients between drug targets, drug-regulated genes and unaffected
genes (Kotlyar et al., 2012). Network-based methods were also used
by other researchers in different networks (Coulomb et al., 2005;
Florez et al., 2010; Han et al., 2013a; Han et al., 2013b; Hwang et al.,
2008; Sualp and Can, 2011; Wachi et al., 2005). However, until
recently, no network-based method is applied in the dataset of toxin
targets.

In this study, the literature-curated (LC) human PPI network
was obtained from BIND (Bader et al., 2003), HPRD (Peri et al.,
2003) and MINT (Ceol et al., 2010). 12 topological properties are
calculated for each node in the PPI network. Significant differences
are found between the topological properties of toxin targets and
the topological properties of other nodes. In order to avoid
statistical bias, 751 non-toxin targets are randomly selected from
the non-toxin target dataset and 751 nodes are randomly selected
from the whole network, this process was repeated 1000 times.
The results show that the toxin targets always have the most
extreme index in all properties. In addition, by using 12 topological
properties and 400 dipeptides (Lin et al., 2010), a machine learning
approach is proposed to predict toxin targets in both a redundant
dataset and a non-redundant dataset. Good performances are
obtained by the jackknife test and 10-fold cross validations in
both datasets. The performance indicates that our model could be
a powerful tool for predicting toxin targets. The workflow of our
study is shown in Fig. 1.

2. Material and method

2.1. Dataset of human protein–protein interactions

Human protein–protein interaction (PPI) datasets were down-
loaded from Online Predicted Human Interaction Database (ver-
sion 1.95) (Brown and Jurisica, 2005) on May 22, 2012. Three data
sources (1) literature-curated (LC) human PPI from BIND (Bader
et al., 2003), HPRD (Peri et al., 2003) and MINT (Ceol et al.,
2010); (2) interactions identified from high-throughput yeast

two hybrid mapping approach (EXP); (3) interactions predicted
from Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila
melanogaster and Mus musculus are included in Online Predicted
Human Interaction Database. In order to obtain the high quality of
human PPIs, only the literature-curated human PPIs were used.
The entire LC network comprises 12,265 nodes and 83,818 inter-
actions. After removing self loops and duplicate edges, the final
network comprises 12,265 nodes and 61,170 interactions (the
nodes represent proteins and the edges represent interactions).
This network contains 228 connected components, and the main
component comprises 11,952 nodes and 61,081 interactions.
Because the topological properties are incalculable for proteins
which do not belong to the main component, so only the main
component is considered in this study.

2.2. Dataset of toxin targets

Toxin targets were downloaded from Toxin and Toxin-Target
Database (T3DB) (Lim et al., 2010) on May 22, 2012. T3DB is a
resource that compiles information about toxins and their targets.
The dataset currently contains over 2900 small molecule and
peptide toxins, 1300 toxin targets and more than 33,000 toxin
target associations. 993 human targets were used in this study.
There were 751 human toxin targets in the PPI network.

2.3. Dataset of non-toxin targets

Because there is still no protein which has been identified as
non-toxin targets now, thus in contrast to previous work (Huang
et al., 2010; Li and Lai, 2007) of establishing non-drug target
dataset, the non-toxin target dataset was established as follows.
First, 20,250 human proteins were downloaded from Swiss-Prot
(Bairoch and Boeckmann, 1991) on May 22, 2012. 993 toxin targets
covered 540 protein families in Pfam database (Bateman et al.,
2004) which contained 6931 human proteins in Swiss-Prot. 6931
human proteins were eliminated from 20,250 human proteins.
Finally, 13,319 proteins remained in the putative non-toxin target
dataset, and there were 6758 proteins in the PPI network.
Although novel toxin targets might exist in this dataset, the chance
was pretty low. Then, 751 non-toxin targets were randomly
selected from 6758 non-toxin targets. This dataset was defined
as control dataset one.

2.4. Randomly selected nodes

In order to compare the topological properties of toxin targets
with those of other nodes in the PPI network, 751 nodes were
randomly selected from the PPI network and this dataset was
defined as control dataset two. So, our final training datasets
consisted of toxin target dataset and two control datasets.

2.5. Topological properties

In this study, the following topological properties are calculated
for illustrating the behavior of the proteins in the PPI network
(Table 1). Degree is the most elementary and simplest topological
index, which is defined as the number of nodes directly connected
to a given node i. Average shortest path (ASP) is defined as the
average shortest path between a node and all the nodes in the PPI
network. The average distance to toxin targets (ADT) is defined as
the average shortest distance between a protein and all the toxin
targets in the PPI network. The shortest distance to toxin targets
(SDT) is defined as the shortest path between a protein and its
nearest toxin target. 1N index (Xu and Li, 2006; Zhu et al., 2009) of
node i is defined as the proportion of toxin targets among all its
neighbors (Fig. S1). In undirected networks, clustering coefficient
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