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H I G H L I G H T S

� We consider integrodifference equations in periodic heterogeneous landscapes.
� We derive novel analytical approximations to the wave-speed.
� Crucially, the landscape period is not constrained by the dispersal scale.
� We demonstrate high accuracy of the approximation through numerical simulation.
� We find that the choice of dispersal kernel has a large effect on the wave-speed.
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a b s t r a c t

Landscape fragmentation has huge ecological and economic implications and affects the spatial
dynamics of many plant species. Determining the speed of population spread in fragmented/hetero-
geneous landscapes is therefore of utmost importance to ecologists. Stage-structured integrodifference
equations (IDEs) are deterministic models which accurately reflect the life cycles and dispersal patterns
for numerous species. Existing approximations to wave-speeds consider only particular kernels, or
landscapes in which the scale of variation is much smaller than the dispersal scale. We propose an
analytical approximation to the wave-speeds of IDE solutions with periodic landscapes of alternating
good and bad patches, where the dispersal scale is greater than the extent of each good patch and where
the ratio of the demographic rates in the good and bad patches is given by a small parameter, denoted as
ε. We formulate this approximation for the Gaussian and Laplace dispersal kernels and for stage
structured and non-stage structured populations, and compare the results against numerical simulations.
We find that the approximation is accurate for the landscapes considered, and that the type of dispersal
kernel affects the relationship between landscape structure, as classified by landscape period and good
patch size, and the spreading speed. This indicates that accurately fitting a kernel to data is important in
determining the relationship between landscape structure and spreading speed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The spread of plant populations has significant ecological and
economic implications. Invasions by introduced plant species
cause ecosystem degradation, loss of biodiversity (Williamson,
1999), have detrimental impacts on human health and well-being
(Pyšek and Richardson, 2010), increase the rate of extinctions
(Vitousek et al., 1996) and cost nations hundreds of billions of US

dollars per year (Pimentel et al., 2005). Conversely, in a conserva-
tion context, as the climate changes and the location of suitable
habitat shifts, a native species' ability to survive will depend on its
ability to spread at an equal or greater rate than that at which its
habitat shifts (Zhou and Kot, 2011; Bennie et al., 2013; Bullock
et al., 2012). Therefore, understanding the process by which a
species’ range expands is of utmost importance, and an area of
ongoing interest in ecology.

Most mathematical models of species' range expansion con-
sider only spatially homogeneous landscapes (e.g. Bullock et al.,
2012) in which the demographic and dispersal parameters do not
vary in space. However, landscape structure is very important in
determining a species' ability to spread and its spreading speed
(Bennie et al., 2013; King and With, 2002). Landscape structure
affects both dispersal and demographic processes, and is therefore
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of particular importance given the extent to which fragmentation
affects the area and spatial distribution of habitats (Hooftman and
Bullock, 2012). Fragmentation consists of two processes, the loss of
suitable habitat and the increasing isolation of remaining habitat
patches. It is a global phenomenon (Fischer and Lindenmayer,
2007), which increases the vulnerability of landscapes to species
invasion (Marvier et al., 2004; Knops et al., 1995) and may reduce
species’ ability to track regions of suitable climate as these regions
shift (Hodgson et al., 2012; Renton et al., 2012).

Plant populations are often studied using stage-structured
matrix models (Caswell, 2000), which can incorporate the differ-
ent characteristics of a species at different points in its life-cycle.
Such stage-structured representation can be incorporated into
integrodifference equations (Kot and Schaffer, 1986), which are
often used to model population spread in plants (Bullock et al.,
2008, 2012; Neubert and Parker, 2004; Schreiber and Ryan, 2011;
Skarpaas and Shea, 2007). Continuous time, age-structured models
have also been used (Van den Bosch et al., 1992). We choose IDEs
as our model as they incorporate important aspects of plant
population behaviour: (1) they treat time as a discrete quantity,
so accurately reflect the seasonal growth and dispersal of many
plant species, and (2) incorporate different dispersal kernels to
model various dispersal mechanisms. Spatial structure is generally
continuous, although spatially discrete IDEs (or Coupled Map
Lattices) have been studied (White and White, 2005).

A simple non-stage-structured IDE relates the continuous popu-
lation distribution utþ1ðxÞ at time tþ1, with the scalar distribution
utðxÞ at integer time t, where xAR is a location in one dimensional
space, via

utþ1ðxÞ ¼
Z 1

�1
kðx�y; yÞf ðutðyÞ; yÞutðyÞ dy: ð1Þ

In the growth phase, the population distribution is multiplied by
the density and location dependent growth rate f ðutðyÞ; yÞ (Neubert
and Caswell, 2000; Caswell et al., 2003; Coutinho et al., 2012; Zhou
and Kot, 2011). For the dispersal phase, the value of the post-
dispersal population distribution at x is obtained by taking the
spatial integral of the product of the pre-dispersal population,
f ðutðyÞ; yÞutðyÞ and the dispersal kernel kðx�y; yÞ, the relative density
of dispersal from y to x (Kot et al., 1996). In other words, the
population abundance at spatial location x at the next generation is
simply the contribution from the birth/death processes, f, of the
current generation that move to location x according to redistribu-
tion kernel, k. Hence, the spatio-temporal population dynamics
heavily depend on the growth and dispersal functions.

The long-term behaviour of solutions to IDEs can be studied
through simulation, but analytical results are very useful, in that
they help understand qualitative behaviour and dependencies on
particular parameters, and provide a less computationally expensive
way to study the dynamics of solutions to IDEs. For homogeneous
IDEs with no Allee effect, where the growth and dispersal para-
meters are independent of location and the intrinsic growth rate
f ð0; yÞ is higher than the growth rate experienced by any non-zero
population f ðu; yÞ, straightforward analytical expressions for the
wave-speed have been derived (Kot et al., 1996). For spatially
heterogeneous IDEs, where the growth and dispersal parameters
vary spatially, the analysis is less straightforward.

The solution of a spatially homogeneous IDE with no Allee effect
is an exponential travelling wave (Kot, 1992), with the spreading
behaviour being governed by the behaviour of the solution's wave-
front (van den Bosch et al., 1990). This is often referred to as the
Linear Conjecture (Mollison, 1991), and allows us to approximate
the IDE by its linearisation. For an homogeneous IDE, the growth
rate f ðutðyÞ; yÞ has no explicit y dependence, allowing us to write it
as f ðutðyÞÞ. The dispersal kernel kðx�y; yÞ depends only on the
distance jx�yj travelled by the propagule, and has no explicit

dependence on the origin y of the propagule, allowing us to write
it as kðx�yÞ. Given these conditions, Weinberger (1982) showed
that the asymptotic wave-speed for travelling wave solutions of (1)
with bounded initial support is given by

ĉ ¼min
s40

1
s
log ðf ð0ÞMðsÞÞ

� �
ð2Þ

where M(s) is the moment generating function (MGF) of the
dispersal kernel kðx�yÞ, MðsÞ ¼ R1

�1 kðzÞesz dz. Neubert and Caswell
(2000) incorporated stage structure into homogeneous IDEs, with
the asymptotic wave-speed being given by

ĉ ¼min
s40

1
s
log ρðsÞð Þ

� �
ð3Þ

where ρðsÞ is the principal eigenvalue of the operator

HðsÞ ¼
Z 1

�1
½KðzÞ○A�esz dz; ð4Þ

where ○ denotes the Hadamard (elementwise) product of two
matrices, KðzÞ denotes the stage structured dispersal kernel and A
the stage-structured population projection matrix linearised around
the zero population state (Neubert and Caswell, 2000).

For spatially heterogeneous IDEs, the lack of an equivalent
expression to (2) has necessitated the development of other appro-
aches to determine population persistence (Van Kirk and Lewis,
1997; Lutscher and Lewis, 2004), invasion conditions and wave-
speeds (Dewhirst and Lutscher, 2009). All the existing approaches
consider periodic landscapes, where the landscape is partitioned into
periodically alternating good and bad patches, with the demographic
rates and dispersal parameters taking fixed values in the different
patch types. Kawasaki and Shigesada (2007) analysed the special
case of the Laplace (exponential) dispersal kernel and used the
piecewise separability of the spatial variables in the kernel to derive
conditions and speeds for invasions in periodic landscapes. Dewhirst
and Lutscher (2009) used averaging techniques to derive conditions
and speeds for any exponentially bounded dispersal kernel in land-
scapes where the period of the landscape is much smaller than the
scale of dispersal (although numerically the approximation has been
found to work outside this range, up to the point where the dispersal
scale and landscape period are of the same order). This difference in
scales allows the replacement of the f ð0ÞMðsÞ term in (2) with the
average of the two corresponding expressions for the good and bad
patches to get the asymptotic wave speed of a non-stage structured
IDE on a periodic landscape. The existing analytical methods have
been successful in their agreement with simulations of IDEs, but are
limited to non-stage-structured populations and either (i) to a
particular choice of kernel, which does not accurately describe the
dispersal patterns of all species, e.g. Samia and Lutscher (2010), or (ii)
to cases in which dispersal occurs at scales much larger than the
distance between patches (Fig. 1a), see Dewhirst and Lutscher (2009)
and Samia and Lutscher, 2010. However, many fragmented habitats
(Fahrig, 2003) such as calcareous grassland in Dorset, UK (Hooftman
and Bullock, 2012) and woodland in Wisconsin (Curtis, 1956), as well
as natural habitats such as vernal pools in California (Holland and
Jain, 1981), do not conform to this pattern and are composed of small
habitat fragments separated by distances which have sufficient
length to make inter-patch dispersal rare. Hence, for general dis-
persal kernels, the spread of species in such landscapes cannot be
analysed by existing methods. There is therefore a need for analytical
approximations of invasion speeds which can incorporate a wide
range of dispersal scales and kernels, stage structure and landscape
heterogeneity, and are appropriate to a broader class of landscapes.

In this paper, we will address this important gap, and will derive
analytical approximations for the asymptotic invasion speeds of
stage structured populations in landscapes where (i) the spatial
extent of good habitat patches is smaller than the scale of dispersal
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