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H I G H L I G H T S

� We study the evolutionary dynamics of two-strategy symmetric multi-player matrix games.
� We make use of the theory of polynomials in Bernstein form.
� We unify, simplify and extend previous work on evolutionary multi-player games.
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a b s t r a c t

In this paper we unify, simplify, and extend previous work on the evolutionary dynamics of symmetric
N-player matrix games with two pure strategies. In such games, gains from switching strategies depend,
in general, on how many other individuals in the group play a given strategy. As a consequence, the gain
function determining the gradient of selection can be a polynomial of degree N�1. In order to deal with
the intricacy of the resulting evolutionary dynamics, we make use of the theory of polynomials in
Bernstein form. This theory implies a tight link between the sign pattern of the gains from switching on
the one hand and the number and stability of the rest points of the replicator dynamics on the other
hand. While this relationship is a general one, it is most informative if gains from switching have at most
two sign changes, as is the case for most multi-player matrix games considered in the literature. We
demonstrate that previous results for public goods games are easily recovered and extended using this
observation. Further examples illustrate how focusing on the sign pattern of the gains from switching
obviates the need for a more involved analysis.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Game theory has been widely applied to evolutionary biology
(Maynard Smith and Price, 1973; Maynard Smith, 1982; Eshel,
1996; Hofbauer and Sigmund, 1998; Rousset, 2004; Vincent and
Brown, 2005; Dercole and Rinaldi, 2008; Broom and Rychtář,
2013). More specifically, the application of game-theoretic con-
cepts has been instrumental in explaining the evolution of traits
as diverse as the sex ratio (Hamilton, 1967; Frank, 1987),
dispersal (Hamilton and May, 1977; Comins et al., 1980), reci-
procity (Axelrod and Hamilton, 1981), group foraging (Clark and
Mangel, 1986), policing (Frank, 1995), and anisogamy (Bulmer
and Parker, 2002). Evolutionary models of these traits often
assume “playing the field” type of interactions (Maynard Smith,

1982, p. 23), where the payoff to an individual depends on an
average property of the population or the group with which it
interacts.

There are many situations, however, where the payoff to an
individual depends critically on the strategy profile in the population
(or its group) and where the actions of different individuals cannot
be averaged; that is, mass action does not apply. Typical examples
involve collective action problems in moderately sized groups, where
the change in behavior by a single individual can result in a large,
discontinuous change in payoffs to others (e.g., Boyd and Richerson,
1988). Such collective action problems have been modeled as multi-
player (or multi-person) matrix games (Broom et al., 1997; Kurokawa
and Ihara, 2009; Gokhale and Traulsen, 2010). Except for the very
special cases in which group size is taken to be equal to two (so that
the well-developed theory of two-player matrix games can be
applied, cf. Weibull, 1995; Hofbauer and Sigmund, 1998; Cressman,
2003) or the payoff structure is linear (as in the standard model of
the N-person prisoner0s dilemma), such games have proven to be
difficult to analyze.
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The intrinsic complexity of multi-player matrix games is
already evident for the case of symmetric games with two pure
strategies A and B on which we focus in this paper. For these
games, the average payoff difference in a large and well-mixed
population is given by the so-called gain function (Bach et al.,
2006)

gðxÞ ¼ ∑
n

k ¼ 0

n

k

� �
xkð1�xÞn�kdk:

Here, n is the number of co-players of a focal player (so that
N¼ nþ1 is the group size), x is the population fraction of
A-strategists, and dk is the gain a focal player would obtain if
switching from strategy B to strategy A when k other group-
members play A. The evolutionary solution of the game (such as
the set of evolutionarily stable strategies, ESSs, or the set of stable
rest points of the replicator dynamics) involves not only finding
the roots of the gain function g(x) (a polynomial of degree n) but
also, as discussed in Broom et al. (1997), determining the behavior
of g(x) in the vicinity of such roots. While this is straightforward
for two-player games (for which g(x) is linear in x) and a full
classification for three-player games (for which g(x) is quadratic in
x) is available (Bukowski and Mie¸kisz, 2004), payoff structures in
groups of size larger than five lead to polynomials of degree
greater than four that cannot, in general, be solved analytically
(Clark, 1984).

In order to deal with such complexity, the vast majority of
previous works on multi-player matrix games has considered
particular functional forms for the specification of the payoffs
and has resorted to lengthy algebra or numerical methods to study
the models (Joshi, 1987; Boyd and Richerson, 1988; Dugatkin,
1990; Weesie and Franzen, 1998; Hauert et al., 2006; Zheng et al.,
2007; Cuesta et al., 2008; Pacheco et al., 2009; Archetti, 2009;
Souza et al., 2009; Archetti and Scheuring, 2011; van Segbroeck
et al., 2012). In this way, some non-linear public goods games,
including multi-player extensions of well-known two-person
matrix games such as the stag hunt (Skyrms, 2004) and the
snowdrift game (Sugden, 1986), have been characterized on a
case-by-case basis.

In contrast to these efforts, Motro (1991) and Bach et al. (2006)
have taken a more systematic approach to the study of non-linear
public goods games. Both of these papers consider situations in
which each contributor to a public good pays a constant cost,
whereas the benefit from the public good, which is obtained by all
players, is a function of the number of contributors. Motro (1991)
proves that in this case the replicator dynamics has at most one
interior rest point if the benefit is concave or convex in the
number of contributors. He also provides necessary and sufficient
conditions for the existence of such a rest point and characterizes
the stability property of all rest points. In a similar spirit, Bach
et al. (2006) find sufficient conditions on the shape of the benefits
such that there exists a critical cost level with the property that for
costs below such a level the replicator dynamics has two interior
rest points, whereas for higher costs there is no interior rest point.

Gokhale and Traulsen (2010) have discussed the relationship
between the sign pattern of the gains from switching and the
number of interior rest points of the replicator dynamics. Speci-
fically, these authors observe that the replicator dynamics has a
single interior rest point if the sequence ðd0; d1;…; dnÞ, which we
refer to as the gain sequence, has exactly one sign change. Gokhale
and Traulsen (2010) also note that the direction of selection (as
given by the sign of the gain function g(x)) cannot have more sign
changes than the gain sequence. This implies that the number of
sign changes of the gain sequence provides an upper bound on the
number of interior rest points of the replicator dynamics. The
latter observation is also made in Hauert et al. (2006) and Cuesta
et al. (2007). When g(x) has no multiple roots, any upper bound on

the number of interior rest points translates directly into an upper
bound on the number of stable rest points because, as noted in
Broom et al. (1997, p. 939), in this case the rest points alternate
between being stable and unstable.

In this paper, we show how sign-change conditions like the
ones discussed by Gokhale and Traulsen (2010) can be refined by
using the fact that the gain function g(x) is a particular kind of
polynomial, known as a polynomial in Bernstein form (or Bern-
stein polynomial), with coefficients given by the gain sequence
ðd0; d1;…; dnÞ. Our analysis rests on the variation-diminishing
property of Bernstein polynomials and a property that we refer
to as the preservation of initial and final signs. These properties
provide a tight link between the sign pattern of the gain sequence
and the sign pattern of the gain function.1 In particular, if the gain
sequence has at most two sign changes, a full characterization of
the possible dynamic regimes is easily obtained.

For most of the collective action problems that have been
modeled as multi-player matrix games it is straightforward to
determine the sign pattern of the gain sequence. Moreover,
because the gain sequences of these games have at most two sign
changes, our characterization results provide all the information
necessary to recover the results on the number and stability of rest
points obtained in previous studies. We demonstrate these claims
for two classes of public goods games, namely threshold games
(e.g., Dugatkin, 1990; Weesie and Franzen, 1998; Zheng et al.,
2007; Souza et al., 2009) and constant cost games (e.g., Motro,
1991; Bach et al., 2006; Hauert et al., 2006; Pacheco et al., 2009;
Archetti and Scheuring, 2011), and two additional examples taken
from Hauert et al. (2006) and van Segbroeck et al. (2012), thus
supporting the claim that the approach developed here unifies,
simplifies, and extends much of the previous work on multi-player
matrix games.

2. Model

Interactions occur in groups of size N¼ nþ1, in which a focal
individual plays a game against n co-players or opponents. Each
individual can choose between one of two different pure strate-
gies, A and B. The game is symmetric so that, from the focal0s point
of view, any two co-players are exchangeable.

Let ak denote the payoff to an individual choosing A when k
opponents choose A (and hence n�k co-players choose B); like-
wise, let bk denote the payoff to an individual choosing B when k
opponents choose A. Also let

dk � ak�bk

denote the gain the focal player makes from choosing A over B,
taking the choices of other players (k playing A and n�k playing B)
as given. The parameters dk, which describe the gains from
switching, are collected in the gain sequence d¼ ðd0;d1;…; dnÞ.
We assume da0, thus excluding the uninteresting case in which
payoffs are independent of the actions chosen.

Evolution occurs in an infinitely large and well-mixed popula-
tion with groups randomly formed by binomial sampling. Hence,
if the frequency of A-strategists in the whole population is x, the
average payoffs obtained by an A-strategist and a B-strategist are
respectively given by

πAðxÞ ¼ ∑
n

k ¼ 0

n

k

� �
xkð1�xÞn�kak

1 The fact that the gain function g(x) is a Bernstein polynomial has previously
been noted by Cuesta et al. (2007). These authors also suggest that the variation
diminishing property of these polynomials may make the analysis of many multi-
player games straightforward, but do not pursue this idea.
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