
Higher-order structure and epidemic dynamics in clustered networks

Martin Ritchie a, Luc Berthouze b,c, Thomas House d, Istvan Z. Kiss a,n

a School of Mathematical and Physical Sciences, Department of Mathematics, University of Sussex, Falmer, Brighton BN1 9QH, UK
b Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton BN1 9QH, UK
c Institute of Child Health, University College London, London WC1E 6BT, UK
d Warwick Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK

H I G H L I G H T S

� Networks of equal clustering may show significantly different higher-order structures.
� We present an efficient motif counting algorithm.
� Novel order-four transitive-type metrics permit more accurate network description.
� We conjecture on the correct motif counting cardinality for use in transitive ratios.
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a b s t r a c t

Clustering is typically measured by the ratio of triangles to all triples regardless of whether open or closed.
Generating clustered networks, and how clustering affects dynamics on networks, is reasonably well
understood for certain classes of networks (Volz et al., 2011; Karrer and Newman, 2010), e.g. networks
composed of lines and non-overlapping triangles. In this paper we show that it is possible to generate
networks which, despite having the same degree distribution and equal clustering, exhibit different higher-
order structure, specifically, overlapping triangles and other order-four (a closed network motif composed of
four nodes) structures. To distinguish and quantify these additional structural features, we develop a new
network metric capable of measuring order-four structure which, when used alongside traditional network
metrics, allows us to more accurately describe a network's topology. Three network generation algorithms are
considered: a modified configuration model and two rewiring algorithms. By generating homogeneous
networks with equal clustering we study and quantify their structural differences, and using SIS (Susceptible-
Infected-Susceptible) and SIR (Susceptible-Infected-Recovered) dynamics we investigate computationally
how differences in higher-order structure impact on epidemic threshold, final epidemic or prevalence levels
and time evolution of epidemics. Our results suggest that characterising and measuring higher-order network
structure is needed to advance our understanding of the impact of network topology on dynamics unfolding
on the networks.

& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Network modelling is an essential tool in characterising a wide
range of phenomena: infectious diseases, brain activity, chemical reac-
tions, social interactions, the internet, etc. Any system that involves
interactions of its constituent components may be modelled as a
network. The versatility of networks as a modelling paradigm may be
further augmented by running dynamical processes on the network
such as epidemics or neuronal activity. A network's structure can have

a dramatic effect on the processes that run on the network which is
currently parameterised by low-order structure alongside the degree
distribution. As we shall see, with epidemiological processes the
presence of higher-order structure affects how a disease spreads
through a network, and the effect of such structures on neuronal
dynamics is known to be significant (Sporns et al., 2005; Honey et al.,
2009; Gallos et al., 2012; Lynall et al., 2010; Kaiser and Hilgetag, 2010).
In this paper we aim to go beyond open and closed triples and give a
more comprehensive description of networks in terms of higher-order
structure frequency (specifically order-four structures) and their dis-
tribution around nodes. In particular, we will examine existing
clustered network generating algorithms with respect to their ability,
or otherwise, to control higher-order network structure which
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sometimes may be regarded as a by-product of generating low-order
structure that can preclude a correct interpretation of the impact of
clustering. The paper is structured as follows. We first introduce and
describe a set of clustered network generating algorithms. We follow
with a presentation of the network metrics (including a description of
the motif identifying/counting algorithm) that we propose to quantify
similarities and differences between the generated networks. We then
analyse and discuss the impact of higher-order structural differences,
at identical degree distribution and equal clustering, on SIS and SIR
epidemics. Finally, we discuss how our motif-counting results and
newly proposed measure for higher-order structures could be used
to parameterise pairwise-like models with closure at the level of
quadruples.

2. Material and methods

2.1. Network construction

A significant part of network research relies on networks with
arbitrary degree distributions built using the configuration model.
This algorithm generates networks where nodes mix at random and
where the probability that two nodes are connected is simply
proportional to the product of their degree. Such networks coupled
with stochastic node dynamics such as SIS, SIR or neural dynamics
are amenable to developing macroscopic low-dimensional ODE
models that are in excellent agreement with values obtained from
stochastic simulations. By construction, these networks are loop-less
in the limit of large network size. Whilst such networks can be
considered in many cases as realistic or plausible models of some
real-world networks, there are many instances where networks
have a high degree of structure that typically involves clusters of
well connected nodes. Classic examples come from household
models used in epidemiology (Ball and Lyne, 2001), and networks
of social interactions in general. Motivated by this, there are a series
of theoretical or synthetic network models that can be tuned to
display increased levels of clustering (Volz et al., 2011; Karrer and
Newman, 2010; Newman, 2009; Read and Keeling, 2003; Eames,
2008; Bansal et al., 2009), where clustering denotes the ratio of
closed loops of length three with respect to all possible open triples,
irrespective of whether they are closed or not.

The classic algorithms to generate networks with tunable cluster-
ing include (a) the spatial algorithm proposed by Read and Keeling
(2003), (b) an iterative method proposed by Eames (2008), (c) a
configuration model that includes clustering (Karrer and Newman,
2010) and (d) the Big-V rewiring algorithm (Bansal et al., 2009; House
and Keeling). In a recent study, Green and Kiss (2010) showed that
even under identical degree distributions and equal levels of cluster-
ing, networks built based on different algorithms can display a
markedly different ‘higher-order structure’. Whilst their analysis
identified large scale structural differences amongst networks with
identical degree distribution and clustering, it did not consider
extending the concept of clustering involving three nodes to higher-
order structures with four or more nodes. The concept of motifs is not

new (Sporns et al., 2005; Karrer and Newman, 2010; Volz et al., 2011;
Keeling, 1999a; House and Keeling, 2011) and understanding network
structure through higher-order motifs is going to provide a level of
detail which cannot be articulated by open or connected triples alone.
Below we provide a brief description of the clustered network
construction algorithms used in this paper.

2.1.1. Big-V rewiring
The ‘Big-V’ is an iterative rewiring algorithm that can introduce

clustering into any given network and is commonly used by network
scientists (Bansal et al., 2009; House and Keeling; Green and Kiss,
2010). At each iterative step, a chain of 5 distinct nodes (u–v–w–x–y)
is selected at random and a clone network is generated where the
links (u–v) and (x–y) are broken and the edges (u–y) and ðv–xÞ are
created. This leads to a single chain of 5 nodes being broken into a
triangle and a disconnected pair, see Fig. 1. Local clustering for each
node in the chain, as well as all of its neighbours, is computed in both
the original and cloned networks and the new configuration is kept
only if the level of clustering has increased.

2.1.2. Motif decomposition rewiring
MD (Motif Decomposition) is an iterative rewiring algorithm

that starts with a collection of complete sub-networks that are
disconnected from one another and rewires edges randomly to
reduce the clustering from its maximal value of 1 to the desired
level. The following steps are performed:

i. Initialise a network that is composed of m complete motifs
each with n members so that N¼nm and 〈k〉¼ n�1.

ii. Categorize every edge as ‘local’.
iii. For the first step only, select at random two local edges, cut

them, and swap the stubs to form new edges. Mark the pair of
new edges as global.

iv. Select a local and a global edge, cut them, and swap the stubs
to form new edges. Mark the pair of new edges as global.

v. Check the global clustering, if the desired level has not been
achieved repeat step (iv).

Fig. 2 illustrates this process being performed on a complete motif
with 4 members. It should be noted that this method may work with
a heterogeneous degree distribution in which case the network would
need to be initialised with motifs of kþ1 nodes for each different
degree k. MD has the significant advantage that it is computationally
cheap and that, in the limit of large networks, network properties can
be calculated analytically (see Appendix A.1).

2.1.3. CCM (Clustered Configuration Model)
It is possible to modify the configuration model (Miller, 2009; Volz,

2008) so that it constructs networks using specified motifs. Karrer and
Newman (2010) and Volz et al. (2011) have shown how to build
networks using a configuration model that includes triangle motifs.
This idea may be easily extended to allow for larger and more exotic

Fig. 1. A single Big-V rewiring. (a) Identify a chain of 5 nodes with 4 edges and (b) if edges ðu–vÞ or ðx–yÞ are already part of a triangle the cuts will not be made, otherwise
rewiring is performed, and (c) independent of the outcome of (b) the algorithm will proceed to find a new chain.
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