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Dynamic flight stability of a hovering model dragonfly
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HIGHLIGHTS

e Hovering flight of the model dragonfly is inherently unstable.

e The instability is caused by the horizontal-velocity/pitch-moment derivative.
e Damping force and moment derivatives weaken the instability considerably.
e Forewing/hindwing interaction has little effect on the stability properties.

e High stroke-plane angles affect how stability derivatives are produced.
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ABSTRACT

The longitudinal dynamic flight stability of a model dragonfly at hovering flight is studied, using the
method of computational fluid dynamics to compute the stability derivatives and the techniques of
eigenvalue and eigenvector analysis for solving the equations of motion. Three natural modes of motion
are identified for the hovering flight: one unstable oscillatory mode, one stable fast subsidence mode and
one stable slow subsidence mode. The flight is dynamically unstable owing to the unstable oscillatory
mode. The instability is caused by a pitch-moment derivative with respect to horizontal velocity. The
damping force and moment derivatives (with respect to horizontal and vertical velocities and pitch-
rotational velocity, respectively) weaken the instability considerably. The aerodynamic interaction
between the forewing and the hindwing does not have significant effect on the stability properties.
The dragonfly has similar stability derivatives, hence stability properties, to that of a one-wing-pair
insect at normal hovering, but there are differences in how the derivatives are produced because of the

highly inclined stroke plane of the dragonfly.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic flight stability is of great importance in the study of
biomechanics of insect flight, and it also plays a major role in the
development of insect-like micro-air vehicles (MAVs). This is
because dynamic stability of a flying system represents the
dynamic properties of the basic system, such as which degrees
of freedom are unstable, how fast the instability develops, which
variables are observable, and so on. In recent years, with the
current understanding of the aerodynamic force mechanisms of
insect flapping wings, researchers are beginning to devote more
effort to understanding the area of dynamic flight stability in
insects (e.g. Taylor and Thomas, 2003; Sun and Xiong, 2005; Sun
and Wang, 2007; Hedrick et al., 2009; Faruque and Humbert,
2010a,b; Liu et al,, 2010; Cheng and Deng, 2011).
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This area is relatively new and research works in the area have
been mainly on hovering flight. Sun and colleagues (Sun and
Xiong, 2005; Sun et al.,, 2007; Zhang and Sun, 2010) studied the
dynamic flight stability in several hovering insects (hoverfly,
cranefly, dronefly, bumblebee, and hawkmoth). Faruque and
Humbert (2010a,b) studied the dynamic flight stability in fruit
flies. Cheng and Deng (2011) also studied the dynamic flight
stability in several hovering insects (fruit fly, stalk-eyed fly,
bumblebee and hawkmoth). In these studies, an ‘averaged model’
and the linear theory of aircraft flight dynamics were employed,
greatly simplifying the analysis (in the averaged model, the wing-
beat frequency was assumed to be much higher than that of the
natural modes of motion of the insect, so that the insect could be
treated as a flying body of only six degrees of freedom and the
effects of the flapping wings were represented by wingbeat-cycle-
average aerodynamic and inertial forces and moments that could
vary with time over the time scale of the insect body). In order to
compute the aerodynamic derivatives in the system matrices, Sun
and colleagues (Sun and Xiong, 2005; Sun et al., 2007; Zhang and
Sun, 2010) employed the method of computational fluid dynamics
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(CFD) and Faruque and Humbert (2010a,b) and Cheng and Deng
(2011) used the blade-element theory and the slopes of experi-
mental lift and drag curves of a sweeping model fruit fly wing. The
studies showed that although these insects were greatly different
in size and wingbeat frequency (the mass of the insects ranged
from 11 to 1648 mg and wingbeat frequency from 26 to 218 Hz),
their hovering flight had qualitatively similar longitudinal stability
properties (their longitudinal natural modes of motion were
the same).

Insects considered in the above studies flap their wings
approximately in a horizontal plane (called ‘normal hovering’),
and furthermore, they have only one pair of wings morphologi-
cally (the flies) or functionally (the bees and moths). Dragonflies
flap their wings in highly inclined planes and they have two pair of
wings morphologically and functionally. It is of great interest to
know whether or not the stability properties of dragonflies are
different from that of these insects.

In the present study, we conduct a quantitative analysis on the
dynamic flight stability of the longitudinal motion of a hovering
model dragonfly. Azuma and Watanabe (1988) measured the
wing-kinematical data of the dragonfly Anax parthenope julius in
free flight at very low speed and Norberg (1975) measured the
data of the dragonfly Aeschna juncea in free hovering flight; these
data are used for the model dragonfly. The required morphological
data of the dragonfly Anax parthenope julius are measured by the
present authors. The averaged model theory is used for the
analysis. The method of computational fluid dynamics (CFD) is
used to compute the flows and obtain the stability derivatives.
Because of the unique feature of the motion, i.e. the forewing and
the hindwing move relative to each other, the approach of solving
the flow equations over moving overset grids is employed. The
technique of eigenvalue and eigenvector analysis is used to obtain
the dynamic stability properties.

2. Methods
2.1. Equations of motion

With the averaged model theory, the equations of motion of
the insect are the same of that of an airplane or a helicopter. For
stability analysis, the equations of motion are linearized by
approximating the body's motion as a series of small disturbance
from a steady, symmetric reference flight condition. As a result of
the linearization, the longitudinal and lateral small disturbance
equations are decoupled and can be solved separately (see e.g.
Etkin and Reid, 1996). Let oxyz be a non-inertial coordinate system
fixed to the body. The origin o is at the center of mass of the insect
and axes are aligned so that at equilibrium, the x- and y-axes are
horizontal, x-axis points forward, and y-axis points to the right of
the insect (Fig. 1). The variables that define the longitudinal
motion are the components of velocity along x- and z-axes
(denoted as u and w, respectively), the angular-velocity around
the y-axis (denoted as q), and the angle between the x-axis and the
horizontal (denoted as 6). Let X and Z be the x- and z-components
of the wingbeat-cycle-average aerodynamic force (due to the
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Fig. 1. Definition of the state variables u, w, g and ¢ and sketches of the reference
frames.

wings and the body), respectively, and M is the wingbeat-
cycle-average aerodynamic pitching moment. At reference flight
(hovering), u, w, q, @ are zero (€ is zero because the x-axis is
aligned with horizontal at reference flight), and Xg=0, Zg= —mg
and Mg=0 (the forces and moments are in equilibrium; the
subscript “E” denotes equilibrium). The linearized equations of
longitudinal motion (linearized about the symmetric reference
flight, see e.g. Taylor and Thomas, 2003; Etkin and Reid, 1996) are

ol = Xuou/m+Xwow/m+X,6q/m—goo (1a)
oW =_Z,0u/m+Zyow/m+2q6q/m (1b)
84 = Mybu/ly+Mwow/Iy +Mq5q/1y (10)
50 =6q (1d)

where Xy, Xw, Xq, Zu, Zw, Zq, My, M,y and My are the stability
derivatives (they represent partial derivatives of the forces and
moments with respect to the state variables); m is the mass of the
insect; g is the gravitational acceleration; I, is the pitching
moment of inertia about y-axis; “-” represents differentiation
with respect to time (t); the symbol é denotes a small disturbance
quantity.

Let ¢, U and t,, be the reference length, velocity and time,
respectively; here c is the mean chord length of the forewing; U is
the mean flapping velocity at the radius () of the second moment
of forewing area, defined as U=2®nr, where @ is the stroke
amplitude of the forewing and n is the stroke frequency (forewing
and hindwing have the same stroke frequency), and t,, is the
period of the wingbeat cycle (t,,=1/n). The non-dimensional form
of Eq. (1) is

out ou*
Sw owt
sq+ | = g+ @
50 56
where A is the system matrix
Xy /m*t Xy /mt X7 /mt  —g*t
+ + + + + +
A— Zy/m* Zy/m* Zg/m 0 3)
M /Iy+ M /Iy+ Mq+ /I;r 0
0 0 1 0

where the superscript “+” denotes the non-dimensional quantity;
the non-dimensional forms are: Ju*=0d6u/U, ow'=5w/U,
8q+ =8qtw; X =X[(pU*S[2), Z* =Z|(pU?S,[2), M =M[(pU>Sc/2);
t* =t/tw, m*=m/(pUSitw/2) (p denotes the air density and S;
denotes the area of the four wings), I =I,/(pU?Sicta/2) and
g =gt\/U [using the flight data given below, m™, I and g* are
computed as m* =10.98, I;” =4.18, g* =0.1315 (p is 1.25 kg/m> and
g is 9.81 m/s?)].

In order to specify A, morphological parameters (m, Iy, etc.) and
stability derivatives (X, Xw, etc.) need to be determined.

2.2. Morphological data

Azuma and Watanabe (1988) measured morphological para-
meters of the dragonfly Anax parthenope julius that were useful for
flight performance study (e.g. insect mass, wing length and area,
etc.). But morphological parameters required for flight dynamics
analysis (e.g. pitching moment of inertia, wing mass, etc.) are not
available. In the present study, we measure the morphological
parameters of this species. Our method of measurement follows,
for the most part, that given by Ellington (1984a), whose paper can
be consulted for a more detailed description of the method.



Download English Version:

https://daneshyari.com/en/article/6370645

Download Persian Version:

https://daneshyari.com/article/6370645

Daneshyari.com


https://daneshyari.com/en/article/6370645
https://daneshyari.com/article/6370645
https://daneshyari.com

