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A U T H O R - H I G H L I G H T S

� We show that a basic requirement to simulate successfully the tumor growing in vitro is to adopt a sigmoidal growth rate.
� We use a different kind of dynamical Monte Carlo method, building the waiting times along the simulation.
� We have obtained non-Poissonian distributions for these waiting times.
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a b s t r a c t

Based on the literature data from HT-29 cell monolayers, we develop a model for its growth, analogous to an
epidemic model, mixing local and global interactions. First, we propose and solve a deterministic equation
for the progress of these colonies. Thus, we add a stochastic (local) interaction and simulate the evolution of
an Eden-like aggregate by using dynamical Monte Carlo methods. The growth curves of both deterministic
and stochastic models are in excellent agreement with the experimental observations. The waiting times
distributions, generated via our stochastic model, allowed us to analyze the role of mesoscopic events.
We obtain log-normal distributions in the initial stages of the growth and Gaussians at long times. We
interpret these outcomes in the light of cellular division events: in the early stages, the phenomena are
dependent each other in a multiplicative geometric-based process, and they are independent at long times.
We conclude that the main ingredients for a good minimalist model of tumor growth, at mesoscopic level,
are intrinsic cooperative mechanisms and competitive search for space.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical modeling of biological systems, such as tumor
growth, has an important role on in vitro (or in vivo) experiments
concerning to formulate hypotheses about mechanisms and in
sugesting new assays (Byrne, 2010). In fact, there is a growing
interest in cancer modeling, since the scientific community begins
to see it as a complex systems disease (Hornberg et al., 2006;
Laubenbacher et al., 2009), which involves from genetic alterations
(Hanahan and Weinberg, 2000) up to tissue aspects (Titz and Jeraj,
2008; Rejniak and McCawley, 2010). Regarding to clinical applica-
tions, one believes that the integration of imaging, treatment-
response relationships, molecular basis, and predictive trials might

speed up the development of more specific and more effective
therapies (Byrne, 2010; Laubenbacher et al., 2009; Stewart and Li,
2007; Titz and Jeraj, 2008; Barazzuol et al., 2010; Kazmi et al., 2012;
Román-Romaán and Torrez-Ruiz, 2012). Thus, we emphasize the
importance of both mathematical and biological modeling and their
uses in a complementary way (Byrne, 2010).

Tumor evolution is a complex process involving several phe-
nomena at different scales (Preziosi, 2003). An approach for the
growth may be done looking at mesoscopic events; e.g., cell–cell
and cell–environment interactions, time interval between duplica-
tions, competition for space, formation or break of bonds that
maintain the aggregate structure, and the temporal dynamics of
the colonies size. To simulate such tumor progress, we may
construct simple models just representing cells by its physical
properties, despite their biological complexity (Drasdo et al.,
2007). An important contribution of such systematizations (Block
et al., 2007; Huergo et al., 2012), even if in two dimensions, is
the classification of tumor growth patterns (Guiot et al., 2003),
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by generic mechanisms at individual cell level (migration, division,
etc.), including molecular inter and intracellular regulation effects
(Jiang et al., 2005), pressure effects (Brú and Casero, 2006) and
evolution of cooperation (Alexrod et al., 2006). Also, one could use
these models to identify cellular activities, which modified, would
result in a maximal inhibition of multicellular evolution, and thus,
point out potential therapeutic targets (Block et al., 2007; Katira
et al., 2012). Brú and colleagues (Brú et al., 1998, 2003), in their
investigation of pattern formation from several cell lines, high-
lighted the importance of the geometric structure and competition
for space on the aggregate boundary. In recent work (Radszuweit
et al., 2009), the authors search for simple and common mechan-
isms for tumor growth; through analysis of 2D and 3D models
they suggested that single cell-based models in two-dimensions
may describe well the general dynamics of its population.

In the search of mechanisms for tumor growth, by using simple
models, we raised the following question: what ingredients are
necessary to capture important features of tumor kinetics in the
mesoscopic scale? Our belief is that cooperative effects and
competitive search for space is the answer. In the next section
we present the numerical method and the model used to simulate
tumor growth; results and discussion appear within the third
section, and in the last one we show the conclusions and point out
our perspectives for future works.

2. Model and methods

We start our modeling approach, in the continuous limit, by
fitting the experimental data (see Fig. 1) by using the following
sigmoidal equation:

ω tð Þ ¼ α� β

1þ exp½γðt�tcÞ�
; ð1Þ

with ωðtÞ � drðtÞ=dt being the mean radius rate.1 At early times the
growth rate is lower, constant, and given by ω0 ¼ α�β. After a
critical time tc, the curve changes its behavior by going to another
constant value ðαÞ. The parameter γ determines how fast the rate
changes from α�β to α ðα4βÞ. Thus, given the condition rð0Þ ¼ r0,

we can find the equation to the mean radius:

r tð Þ ¼ r0 þ
β

γ
ln

exp½�γðt�tcÞ� þ 1
expðγtcÞ þ 1

� �
þ αt: ð2Þ

Now, we introduce a discrete (minimalist) model using a lattice
with M ¼ L� L sites, in which each site can only be in a tumor status
T or in an empty status V. We assume that the occupancy probability
(p0) of an empty site next to a tumor site carries the local and global
information of the system at each instant; our global/local interaction
is different from the one in the literature for epidemic models (Aièllo
et al., 2000; Aiello and da Silva, 2003; Cardy and Grassberguer, 1985).
There, they put the effects explicitly, while here, we bring them
together. In this context, we assume that p0 comes directly from
Eq. (1) by doing p0 ¼ p0ðtÞ �ωðtÞ=α; consequently, we can write the
transition rate for each empty site in the form gqðtÞp ½1�ð1�p0Þηq �
(Cardy and Grassberguer, 1985), where ηq is the number of neighbors
with status T of an empty site labeled with index q. Finally, we can
write the transition probability per unit of time as

gq tð Þ ¼ b 1� β

α

� �
1

1þ exp½γðt�tcÞ�

� �ηq� �
; ð3Þ

where b is the frequency of new tumor sites in a colony. Here we
consider the first and second nearest neighbors, i.e., 0rηqr8. Also
we consider that just one event occurs at each time interval Δt, i.e.,
jΔnT j ¼ jΔnV j ¼ 1. Thus, we can write the stochastic equation (Aiello
and da Silva, 2003)

d
dt
nT tð Þ ¼∑

j
〈gðtÞ〉jPj tð ÞnðjÞ

0 ; ð4Þ

where ∑jð⋯Þ is the sum of over all possible system configurations
available at time t; 〈gðtÞ〉j ¼∑qg

ðjÞ
q ðtÞ=nðjÞ

0 represents the mesoscopic
rate of the growth (an average over each configuration j); Pj(t) is the
probability of finding the system in the state j at time t; and n0 (from
now on we will omit the configurational index j for all variables) is
the total number of empty sites in the colony–medium interface;
some of these sites may be inside the colony. The total number of
lattice sites is M ¼ nT þ nV , being nV ¼ n0 þ ~nV the total number of
empty sites, i.e., those (n0) which contribute to the increase of nT
(with ηq40), plus those ð ~nV Þ that do not contribute (with ηq ¼ 0).
We neglect (explicitly) the cell death, migration and other process
that could reduce the aggregate area, i.e., the transition T-V .

We solve Eq. (4) using the dynamical Monte Carlo method
(DMC) approach (Aiello and da Silva, 2003). In the simulations, we
estimate the average waiting time between two events with the
expression

ΔtðnT Þ ¼ 1
∑
q
gqðtÞ

: ð5Þ

The superscript ðnT Þ denotes the average waiting time between the
ðnT�ΔnT Þ-th and the (nT)-th cell2 growth event. Finally, we use the
following dynamical hierarchy (Aièllo et al., 2000):

Hq ¼
gqðtÞ

max½gqðtÞ�

¼ 1�ð1�p0Þηq
1�ð1�p0Þηmax

; ð6Þ

where max½gqðtÞ� denotes the maximum value of gq(t).
Operationally, one does the DMC procedure by choosing a site

of the set fn0g with equal probability, and then compares Hq with a
random number ξ, uniformly distributed in the interval ½0;1Þ.
If Hq4ξ, one accepts the new configuration and updates the

Fig. 1. The growth rate of the mean radius of aggregates of HT-29 cells (Brú et al.,
2003). The blue dotted lines show the initial rate and its saturation. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)

1 The derivative is obtained from the average slopes of adjacent points for each
experimental data point.

2 The word cell (in italic) does not represent biological cells, but just the T sites;
we believe that a reescale factor can make the direct correspondence between nT
and the actual number of cells (Jiang et al., 2005).
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