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H I G H L I G H T S

� We give theoretical support to recent experimental findings.
� Adaptive limiter control can be a global method to stabilize population oscillations.
� Our analytical results provide guidance how to choose the control intensity.
� The initial transients can be important and inflate the control effort.
� We present new properties with important practical implications.
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a b s t r a c t

We analyse the adaptive limiter control (ALC) method, which was recently proposed for stabilizing
population oscillations and experimentally tested in laboratory populations and metapopulations of
Drosophila melanogaster. We thoroughly explain the mechanisms that allow ALC to reduce the magnitude
of population fluctuations under certain conditions. In general, ALC is a control strategy with a number of
useful properties (e.g. being globally asymptotically stable), but there may be some caveats. The control
can be ineffective or even counterproductive at small intensities, and the interventions can be extremely
costly at very large intensities. Based on our analytical results, we describe recipes how to choose the
control intensity, depending on the range of population sizes we wish to target. In our analysis, we
highlight the possible importance of initial transients and classify them into different categories.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stability of biological populations has attracted a lot of atten-
tion because it determines, amongst others, extinction probability
(Thomas et al., 1980; Berryman and Millstein, 1989; Allen et al.,
1993), effective population sizes and genetic diversity (Mueller
and Joshi, 2000) as well as population fitness (Charlesworth, 1994).
A large range of fluctuation in the population size over time tends
to invoke a low stability of the population. Several authors have
therefore proposed control strategies to stabilize a population (e.g.
McCallum, 1992; Solé et al., 1999; Stone and Hart, 1999; Hilker and
Westerhoff, 2006, 2007a; Liz, 2010; Carmona and Franco, 2011;
Dattani et al., 2011; Franco and Perán, 2013). These control
strategies typically aim at creating stable population sizes by
removing (harvesting/thinning) or adding (stocking) individuals

following certain rules. Although the mechanisms of these strate-
gies are theoretically well understood, experimental demonstra-
tion of reduced population fluctuations remains rare (Desharnais
et al., 2001; Becks et al., 2005; Dey and Joshi, 2007, 2013) and
there is, in general, a lack of empirical evidence for the stabilizing
properties of control methods.

Recently, Sah et al. (2013) have proposed adaptive limiter control
(ALC) as a novel method for controlling population oscillations. The
idea behind ALC is to restock the population if there is too large a
crash in the population size. More specifically, individuals are added
if the population size falls below a certain fraction of its value in the
previous generation. ALC is related to the family of limiter control
methods (see the next section for a more detailed description of the
method). Sah et al. (2013) have tested ALC in experiments with
laboratory populations and metapopulations of the fruit fly Droso-
phila melanogaster. Their results suggest that increased ALC intensity
enhances population stability, measured in terms of reduced fluctua-
tions and extinction frequencies.

ALC is in some sense ‘atypical’ when compared to other control
methods, because it is one of the few methods that have been
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studied empirically. Sah et al. (2013) corroborate their experimental
results also by some numerical simulations of a mathematical
model. However, it is inherent to the method of numerical simula-
tions that they only apply to particular situations, specified for
example by the values of model parameters and initial conditions. It
is not clear whether results observed for some simulations will hold
for other simulations. For instance, we support the observation of
Sah et al. (2013) that in some situations ALC is not only ineffective,
but actually worsens population stability. Hence, the question arises
whether or not, and under which circumstances, ALC is a good
strategy to stabilize biological populations.

In this paper, we present mathematically rigorous results on ALC.
They provide a theoretical basis for the stabilizing properties observed
in the experiments and simulations by Sah et al. (2013). Currently,
there is a lack in the theoretical understanding of ALC, as there are no
results available that explain the mechanisms and effects of ALC. Our
analytical results thus contribute to filling this gap.

In the next section, we begin with introducing ALC in a simple
deterministic setting. We then present a number of analytical
results. The main one confirms the observation of Sah et al. (2013)
that greater ALC intensities invoke the population to have lower
variation in size over time, measured in terms of the fluctuation
range. In addition, we present a number of novel results. We work
out a number of useful properties that can be relevant for the
implementation and applicability of ALC. This includes the fre-
quency and the cost of interventions; a description of initial
transients; how to plan ahead; and how to choose the ALC
intensity in order to attain a certain desired reduction in the
fluctuation magnitude. Moreover, we show that the stabilizing
effect of ALC is global, i.e. independent of the initial population
size, for a wide range of population models.

2. Adaptive limiter control

2.1. Underlying population dynamics

Before introducing the ALC method and some of its effects, we
describe the underlying population dynamics in the absence of
control. We assume that the uncontrolled population follows the
discrete-time dynamical system given by

xtþ1 ¼ f ðxtÞ; x0A ½0;1Þ; tAN; ð1Þ

where xt denotes the population size at time step t. Function f
describes the population production, sometimes also called the

stock–recruitment curve, and is assumed to satisfy the following
conditions:

(C1) f : ½0; b�-½0; bÞ (b¼1 is allowed) is continuously differenti-
able and such that f ð0Þ ¼ 0 and f ðxÞ40 for all xA ð0; bÞ.

(C2) f has two nonnegative fixed points x¼0 and x¼ K40, with
f ðxÞ4x for 0oxoK , and f ðxÞox for x4K .

(C3) f has a unique critical point doK in such a way that f ′ðxÞ40
for all xAð0; dÞ, f ′ðxÞo0 for all x4d, and f ′ð0þ Þ; f ′ðb�ÞAR.

These conditions are standard assumptions in the study of
discrete-time population dynamics (e.g. May, 1976; Singer, 1978;
Cull, 1981; Schreiber, 2001; Liz, 2007; Carmona and Franco, 2011).
Essentially, they describe a hump-shaped population production
(peaking at x¼d). From a biological point of view, the population
dynamics are overcompensatory, caused e.g. by scramble competi-
tion (Britton, 2003). The population has two fixed points, namely
the extinction state x¼0 and a positive equilibrium x¼K. There is
no demographic Allee effect. Examples include the Ricker (1954),
Hassell (1975) and generalized Beverton–Holt (Bellows, 1981)
maps, in their overcompensatory regimes where applicable.

2.2. Modelling ALC

If the population size xt at time step t drops below a certain
threshold, then there is an intervention augmenting the popula-
tion back to this threshold. In this, ALC is similar to limiter control
methods (Corron et al., 2000; Hilker and Westerhoff, 2005, 2006).
Since the threshold is a fraction of the previous population size
and as such variable, the limiter is considered ‘adaptive’. In Fig. 1
we illustrate how ALC modifies the dynamics of the population. In
particular, we can observe a reduction in the fluctuation range.

When applying ALC, we have two different population sizes at
time step t, namely the population size before and after the action
of ALC. In discrete-time models, the order of events is important
(Åström et al., 1996; Bodine et al., 2012; Lutscher and Petrovskii,
2008). Let us denote by bt (respectively at) the population size
before (respectively after) the action of ALC in time step t. We note
that btrat , because ALC never removes individuals.

If ALC augments the population size, this induces an ‘intra-
generation’ variation. We illustrate this in Fig. 1 with dashed red
lines. In this example, we can observe that the sizes of bt and at are
different when ALC is applied.

A direct consequence of having two population sizes at time
step t is that we must choose one of them to define the adaptive
threshold in the next time step tþ1. In their experiments and
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Fig. 1. During the first 20 generations, the population is uncontrolled and follows Eq. (1). In the next 20 generations, the population is controlled by ALC, following system
(2). Blue circles and red triangles indicate the population size after and before ALC, respectively. Therefore, a blue circle inside a red triangle corresponds to a generation
where ALC did not modify the population. Dashed lines connecting blue circles with red triangles indicate ALC interventions (thus inducing intra-generation variation). Note
the clear reduction of the fluctuation range in the controlled population compared to the uncontrolled population. Population dynamics follow the Ricker map
f ðxÞ ¼ x expðrð1�x=KÞÞ with growth parameter r¼3 and carrying capacity K¼60. ALC is applied with intensity c¼0.75. (For interpretation of the references to colour in this
figure caption, the reader is referred to the web version of this paper.)
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