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a b s t r a c t

We use three network models, Erdős–Rényi, Watts–Strogatz and structured nodes, to generate networks
sharing several topological features with the neural network of C. elegans (our target network). A new
topological measurement, incoming and outgoing edges heat maps, is introduced and used to compare the
considered networks. We run these networks as random recurrent neural networks and study their
dynamics.

We find out that none of the considered network models generates networks similar to the target one
both in their topological features and dynamics. Moreover, we find that the dynamics of the target
network are very robust to the rewiring of its edges.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the previous years several fields of Biology saw important
advances in the study of processes and phenomena when they are
regarded as networks (Junker and Schreiber, 2008; Kleinberg and
Easley, 2011). This study has been fuelled by the understanding of
links between topology and dynamics (Milo et al., 2002, 2004;
Alon, 2006) and by the definition of network models that are able
to generate networks with topological features present in biolo-
gical networks (Barabàsi and Albert, 1999; Chung et al., 2003;
Frisco, 2011).

A similar development took place also in neural networks.
Recent studies linked neural network topology and dynamics in a
novel way (Bock et al., 2011; Ko et al., 2011; Perin et al., 2011;
Sporns et al., 2000; Bassett and Bullmore, 2006; Lu et al., 2009;
Lago-Fernández et al., 2000). These important discoveries have not
been matched by new network models that are able to closely
replicate neural networks. Researches using network models
in order to generate networks similar to neural networks
employed either classical network models (i.e., Erdös–Rényi) or
more recent ones (e.g., Watts–Strogatz) that are able to replicate
only some (often just one) topological features present in the
neural networks.

The ability to generate networks similar to empirical neural
networks is paramount: it allows us to test theories that cannot be

tested in empirical networks, it allows us to understand how the
network could behave under different stimuli, etc. Moreover, one
should know that simulating the dynamics of a network is a costly
undertaking and, even if very simplified network models, it is not
possible to simulate in real-time the dynamics of a network with
more than a few tens of thousands nodes (Izhikevich, 2003; Vogels
et al., 2005), and an exhaustive exploration of the state space of a
network with more than a few hundreds nodes is not feasible
(Drossel, 2008). It would be helpful if the dynamics of a network
could be inferred from the topological features of the network
without any simulation on the dynamics. This would allow faster
analysis of network dynamics and the ability to infer the dynamics
of very large networks.

In this paper we take a critical look at the network models used
to replicate neural networks. Some of the questions we address are
as follows: How similar are the topologies of the networks
generated by the network models to the ones of the empirical
neural networks that they aim to replicate? Are there, for neural
networks, topological properties describing these networks better
than the others? Are the dynamics of empirical and generated
networks comparable?

As a case study we consider the neural network of C. elegans. In
the following we refer to this network as the target network. We
chose this network because it is relatively small, its topology is
completely known and it has been extensively used as a bench-
mark for several studies (Watts and Strogatz, 1998; Milo et al.,
2002). We use the connected component of 297 neurons with the
synaptic links between them. We included both chemical and
electrical synapses (gap junctions) in the network and treat them
equally (Majewska and Yuste, 2001). We aggregated multiple
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connections from one node to another as a single edge in the
network, for this reason we cannot differentiate between different
connection types. We computed several topological features of this
neural network and we tested its dynamics under different stimuli
when it is regarded as a random recurrent neural network. Then,
using known network models, we generated networks having
topological features as similar as possible to our case study, we
treated these networks as random recurrent neural networks, and
we tested their dynamics under different stimuli.

We found out that there is very little relation between
similarities in dynamics and similarities in topology between our
case study and the generated networks. This means that similar
dynamics between a particular generated network and the target
network do not imply similar topology. Also the opposite does not
hold true: artificial networks having topological features similar to
the target network do not share similar dynamics.

The present paper poses more questions than it actually
answers (see Section 6). Overall, our findings can be summarised
saying that none of the current network models seems to be
appropriate to replicate the target network. If one wants to have
networks similar (both in topology and dynamics) to the target
network, then it is better to obtain other networks simply by
perturbing (i.e., applying a filter/noise) the edges of the target
network. Put in different terms, this research lets us realise even
more the pitfalls in which it is possible to incur when trying to
replicate complex networks. This proves that the classical network
models considered by us are not appropriate to model neural
networks. As a consequence, we conclude that other network
models (possibly including other elements as development, topo-
graphy, etc.) should be pursued to replicate neural networks.

The rest of the paper is organised as follows. The initial sections
give a background on networks and network topological properties
we considered (Section 2), the network models we used (Section 3)
and the model of neural networks we adopted (Section 4). The
followed methodology and obtained results are described in Section
5. In Section 6 we give our remarks on our study. The appendices
give further details on one of the considered network models.

2. Networks and their topological properties

In this section we introduce the network terminology that we
employ together with short definitions of the topological features
we considered. Further details on network topological features can
be found in Junker and Schreiber (2008).

Networks are composed of nodes connected by edges. We
consider directed connected networks. This means that any edge
can be traversed in one way but not in the other and if edges were
considered bi-directional, then there would be a path from any
node to any other node in the network. The in-degree (out-degree)
of a node is given by the number of incoming (outgoing) edges it
has, the path length between two nodes in a network is given by
the minimum number of edges that have to be traversed in order
to go from one node to the other, while the clustering coefficient of
a node with k neighbours having e edges between themselves is
2e=kðk�1Þ (when computing the clustering coefficient edges are
regarded as bi-directional).

The network topological properties we considered as measures
of similarity are as follows:

incoming (outgoing) average degree: the sum of the in-degree
(out-degree) of each node divided by the number of nodes;
average path length: the sum of all shortest path lengths
between any pair of different nodes divided by the number of
pairs of different nodes;

average clustering coefficient: the sum of the clustering coeffi-
cients for each node divided by the number of nodes;
in(out)-degree distribution: the probability distribution indicat-
ing the probability to find in a network a node with a given in-
degree (out-degree);
incoming (outgoing) edges heat map: let X be the set of nodes
with a specific in-degree (out-degree). Let Y be the set of nodes
having an edge to (from) any node in X. This 2D heat map
shows the in-degree (out-degree) of the nodes in Y.

The incoming (outgoing) edges heat map is defined for the first
time in the present paper. In other words this heat map shows the
answer to this kind of question: What is the out-degree of all
nodes receiving an edge from nodes with an out-degree α?

The reason why we introduced this measure is because, when
dealing with dynamical networks, it is important to have an idea
of how signals (or however the dynamics are defined) can
propagate through the networks.

If, in a network, a node with many outgoing edges is connected
to other nodes with many outgoing edges, then the signal from that
first node would likely propagate quickly through the network.
Contrary to this, a node with many outgoing edges that connect to
the nodes with a few outgoing edges is likely to take longer for its
signal to propagate through the network. As we will see, edges heat
maps gave us a deeper understanding of the networks that could
not be deducted from any other topological property.

We want to emphasise further that, when comparing networks,
it is unusual to compare several topological features as we do. The
vast majority of comparisons present in the scientific literature
consider very few (often just one) topological features. Of course,
when dealing with complex networks, the more features that are
considered the more difficult it is to find networks matching all
these features. We appreciate the difficulties in generating net-
works with several given topological features, but we believe that
network comparison can be meaningful only if a broad range of
topological features are considered. This view is also shared by
others (Ratmann et al., 2007).

3. Network models

We generated networks using three network models briefly
outlined in the following. Each of these three models constructs
networks in a different fashion and the networks obtained by
these models have very different topological properties.

The Erdős–Rényi (ER) model (Erdös and Rényi, 1959) (the
networks generated by it are also known as random networks)
starts from a fixed number of nodes and it adds edges with a fixed
probability pER. Networks created by the ER model are likely to
have a low average path length but they fail to account for
the local clustering characterising many empirical networks.
This model has been extensively used to model neural networks
(Dauce et al., 1998; Siri et al., 2006; Sompolinsky et al., 1988).

The Watts–Strogatz (WS) model (Watts and Strogatz, 1998)
starts from a lattice in which each node has degree nWS, then it
rewires each edge with probability pWS. In our implementation
nodes are arranged in a ring and each node has outgoing edges to
its nWS=2 clockwise and nWS=2 counter-clockwise neighbours.
When edges are rewired their direction is not changed. Networks
created by the WS model are likely to have the small-world
property (the minimum path length between any pair of nodes
is approximately equivalent to a comparable random network but
the nodes of the network have greater local inter-connectivity
than a random network) found in many neural networks (Bassett
and Bullmore, 2006; He et al., 2007; Sporns and Zwi, 2004).
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