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H I G H L I G H T S

� Model provides a framework for exploring basic rules of polarised growth.
� Links wall material to deposition self-similar shape.
� Accurately predicts self-similar geometry in a range of organisms.
� Predicts the location of the region of maximal wall deposition in a range of organisms.
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a b s t r a c t

Growth by cell elongation is a morphological process that transcends taxonomic kingdoms. Examples of
this polarised growth form include hyphal tip growth in actinobacteria and filamentous fungi and pollen
tube development. The biological processes required to produce polarisation in each of these examples
are very different. However, commonality of the polarised growth habit suggests that certain “basic
physical rules” of development are being followed. In this paper we are concerned with trying to further
elucidate some of these basic rules. To this end, we focus on a simple and hence ubiquitous description of
the polarised cell, its geometry, and using a mathematical model investigate how geometry and the
deposition of new wall material could be related. We show that this simple model predicts both cell
geometry and the location of maximal wall-deposition in a range of examples.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Growth by cell elongation is a morphological process that trans-
cends taxonomic kingdoms. Examples include hyphal tip growth in
actinobacteria and filamentous fungi, plant root-hair formation, pollen
tube development and the development of neurons in animals (see e.
g. Read and Steinberg, 2008; Flärdh, 2003; Rounds et al., 2011;
Cáceres, 2012 and the reference therein). In microorganisms, such as
fungi and bacteria, these structures have developed almost surely
because they afford an evolutionary advantage, producing a growth
habit well-suited to exploiting physically complex environments and
facilitating the (internal) redeployment of nutrients over long spatial
scales. For pollen tubes and neurons, again the polarised growth form
allows for the efficient transfer of materials (sperm cells) and
information (electrical impulses) over large spatial distances. The
biological processes required to produce this polarised growth form
are clearly very different whenmanifested in plant, bacterial, fungal or
mammalian cells. Even within different classes of the same organism,

the transport of vesicles containing wall-building materials to the
growing tip can be achieved by very different mechanisms. For
example, in pollen tubes the circulation of vesicles is in entirely
opposite directions in angiosperm and gymnosperm (Kroeger and
Geitmann, 2012).

Despite their biological differences, the basic mechanics of tip
formation are similar in many cases including fungi, bacteria and
pollen tubes—a soft region in the cell wall is located at or near the
apex. This soft tip is stretched by internal forces and thus driven
forward. A combination of turgor pressure, the developing cytos-
keleton and the structure of the cell wall itself make up the driving
forces (Read and Steinberg, 2008; Kroeger et al., 2011; Winship
et al., 2010). Sub-apically, the wall stiffens and thus a tube-shaped
cell is formed. The commonality of polarised growth structures
across these diverse organisms suggests that certain “basic physi-
cal rules” are being followed that are in some sense independent
of the precise mechanisms of delivery (Campàs et al., 2012).
Moreover, if we compare even fungi and actinobacteria, it is clear
that these rules are scaleable—tip growth is similar, despite the
orders of magnitude difference in cell size (Davidson, 2010).

At a fundamental level, modelling tip growth processes require
descriptions of (i) the cell wall and (ii) the delivery of materials to
maintain the cell wall and produce new growth (Dumais et al., 2006).
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To mathematically describe the cell wall, both geometrical and
biomechanical models have been developed. The former allows for
the most basic, but qualitatively accurate description of possible
self-similar tip-like shapes (e.g. Bartnicki-Garcia et al., 1989). More
detailed biomechanical models take account of, for example, wall-
material delivery and the balance of forces on the cell-wall, which
is assumed to be a thin, differentially elastic or elasto-plastic
membrane (e.g. Dumais et al., 2006; Goriely and Tabor, 2003;
Dumais et al., 2004; Rojas et al., 2011). In these latter models, the
tip shape is not predetermined, rather it evolves naturally through
the mathematical rules for the material properties. See Goriely and
Tabor (2008) for a comprehensive review of both approaches in
modelling fungi and actinomycetes and Kroeger and Geitmann
(2012), Geitmann (2010) and the references therein for pollen tube
growth. Bernal et al. (1997) provide an overview of the transfer of
modelling ideas from inert to biological materials in determining
possible tip morphologies. More detailed properties of wall devel-
opment continue to be investigated, for example in Eggen et al.
(2011), the maturation of wall building material in fungal hyphae
is explicitly modelled. Moreover, a model for pollen tube growth
that encompasses both material deposition and wall deformation
has recently been presented in Rojas et al. (2011). In this paper we
are concerned with trying to elucidate some basic physical rules
for polarised growth. Given that the delivery mechanism of wall-
building materials and the properties of the wall itself can be very
different in different organisms, we focus on a simple and hence
ubiquitous description of the polarised cell: its geometry. How-
ever, the model analysed here lies at the interface between the
approaches discussed above in that it relates the geometry of the
tip to the deposition of wall-building materials in a mechanistic
way. By developing a model first proposed in Goriely et al. (2005)
as a way of describing hyphal tips of filamentous fungi and
bacteria, we construct a basic description of how geometry and
the deposition of new wall material could be related in a wider
class of organisms.

The paper is organised as follows. In Section 2, we discuss the
formulation of the model. To assist the reader and to provide
sufficient clarity for the subsequent discussion, this includes a
brief review of the basic model formulation given in Goriely et al.
(2005). Then, in Section 3, we present an extension of this model
and construct and analyse general forms for expressions deter-
mining the relationship between tip geometry and wall-material
deposition. Finally, in Section 4, we present some examples of tip
geometries and discuss how they are described by the model. We
draw some brief conclusions and in particular note that the model
is not only capable of capturing tip geometry, but also accurately
predicts the location of maximum wall deposition in a wider class
of organisms.

2. Construction of the model

2.1. Basic description

It is a common feature of polarised growth in many organisms
that a self-similar shape is formed at the apex of the cell that
moves forward with constant average velocity. It is well-known
that many organisms including fungi and pollen tubes can exhibit
both random fluctuations in extension rate and pulsatile growth
(see e.g. Rojas et al., 2011; Sampson et al., 2003), but the average
velocity can be reasonably assumed constant. Thus, it is assumed
that the medial section of the polarised cell can be described by a
curve, C, that translates at a constant speed, U0, in a given spatial
direction. The curve, C, can be parameterized by arc length, s, and
time, t, see Fig. 1. A moving frame of reference, ðx; yÞ, is associated
with the tip, the vertex being located at the origin in this moving

frame. The tip is assumed to be axisymmetric about the y-axis.
Hence a three-dimensional representation of the tip can be
generated by rotating the curve C around the y-axis through 2π
radians. Further assumptions can be made as follows: (i) the arc
length, s, can itself be parameterised by the material coordinate, s,
and time, t, i.e. s¼ sðs; tÞ and (ii) the tip shape does not explicitly
depend on t, i.e. the tip is self-similar and any change in the profile
is due to the movement of material points with respect to each
other and not through translation of the curve (other than in the
Y-direction). Thus, relative to the origin in the fixed frame of
reference, ðX;YÞ, the curve can be identified by

rCðsðs; tÞ; tÞ≔ðXðs; tÞ;Yðs; tÞÞ ¼ ðX0 þ f ðsðs; tÞÞ;Y0 þ gðsðs; tÞÞ þ U0tÞ;
where ðX0;Y0Þ is the location of the origin of the moving frame at
t¼0 (this can be set to be ð0;0Þ without loss of generality), U0 is
the translation speed introduced above and ðf ; gÞ is the coordinate
of the material point s on C with respect to the moving frame of
reference. The angle θ marked in Fig. 1 is defined to be the angle
between the normal n to the curve at s and the y-axis. The
dynamics of the curve can therefore be expressed as

drCðsðs; tÞ; tÞ
dt

¼ df
ds

∂s
∂t

;
dg
ds

∂s
∂t

þ U0

� �
≕Wtþ Un; ð1Þ

where W and U denote the magnitude of the tangential, t, and
normal, n, components of the velocity, respectively, where

t¼ df
ds

;
dg
ds

� �
¼ cos θ;� sin θð Þ and n¼ � sin θ;� cos θð Þ: ð2Þ

From (1), and on taking the scalar product with n and t in turn, it
follows that

U ¼U0 cos θ and W ¼ ∂s
∂t

�U0 sin θ: ð3Þ

A key assumption of the model is that W can be set to zero. This is
in line with the long-standing normal growth hypothesis, first
proposed in Reinhardt (1892). This hypothesis states that any
material point embedded in the cell wall will move normal to the
wall. Reinhardt (1892) made this conclusion based on observations
and projection methods, but discounted turgor as being the main
cause of this phenomenon. It was not until 2000 that the
orthogonal movement of particles adhered to the outside (and
inside) surface of fungal hyphae was reported (Bartnicki-Garcia
et al., 2000). In that paper, the key conclusion was that this
orthogonal movement of wall material was a result of turgor
pressure (which is by definition orthogonal to the wall and equal
at all areas of the tip). Thus it is proposed that the forward motion
of the tip shape is a result of this internal pressure and the
anisotropic delivery of wall-building materials released from an
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Fig. 1. The curve, C, and the associated variables.
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