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H I G H L I G H T S

� We present a data-driven approach to directly classify raw images of collective behavior.
� We rapidly create training images that match attainable far-field videos of real animal groups.
� We validate the setup on datasets of collective motion with increasing complexity.
� We demonstrate the proposed framework to classify raw videos of schooling zebrafish.
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a b s t r a c t

In this paper, we build a framework for the analysis and classification of collective behavior using
methods from generative modeling and nonlinear manifold learning. We represent an animal group with
a set of finite-sized particles and vary known features of the group structure and motion via a class of
generative models to position each particle on a two-dimensional plane. Particle positions are then
mapped onto training images that are processed to emphasize the features of interest and match
attainable far-field videos of real animal groups. The training images serve as templates of recognizable
patterns of collective behavior and are compactly represented in a low-dimensional space called
embedding manifold. Two mappings from the manifold are derived: the manifold-to-image mapping
serves to reconstruct new and unseen images of the group and the manifold-to-feature mapping allows
frame-by-frame classification of raw video. We validate the combined framework on datasets of growing
level of complexity. Specifically, we classify artificial images from the generative model, interacting self-
propelled particle model, and raw overhead videos of schooling fish obtained from the literature.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The study of collective behavior is often complemented with
the analysis of high-volume datasets available in the form of
simulated trajectories (Vicsek and Zafeiris, 2012; Romanczuk
et al., 2012; Frewen et al., 2011) and videos (Ballerini et al.,
2008). Patterns in these datasets are recognizable to a trained
observer, who can quickly determine whether a set of particles or
a school of fish is moving together in coordination or in complete
disorder. However, this standard of recognition is not available
at a machine level, where we must classify the trajectory data
by fitting it into activity models (Choi et al., 2009; Patterson
et al., 2009; Li and Chellappa, 2010). The intermediate process of

multi-target tracking is a computational overhead that scales with
the number of animals observed (Delcourt et al., 2009; Parrish and
Hammer, 1997). Although a naive comparison of images to an
exhaustive database of training videos would preclude the need to
track individuals, it would shift the computational burden from
processing to storage. Instead, an enabling requirement for a fast,
data-driven approach is to store recognizable patterns of collective
behavior in a compact representation so that they can be archived
and retrieved for quick comparison.

Assuming no coordination among individuals, we expect the
trajectories of group members to be independent of each other,
thus requiring a large number of degrees of freedom to describe
the group motion; trajectories of coordinated individuals should
instead be manifested through fewer degrees of freedom related to
the movement of select group members. This realization forms the
first step to reduce the data to a few important features that can
faithfully represent the ongoing process. For example, images of
animal groups may be classified on the basis of features of the
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spatial distribution, such as number of subgroups, population
density, and group configuration, and features of the dynamics,
such as change in group size, orientation, and speed. As a group of
animals maneuver through space, temporal variation of these
features can inform the nature of the interaction between them
(Katz and Tunstrøm, 2011; Herbert-Read et al., 2011; Aureli et al.,
2012).

Dimensionality reduction is the process of identifying low-
dimensional representations that preserves the dissimilarities
between points on a high-dimensional space (Cayton, 2005; Belkin
et al., 2006). The high-dimensional data may be in the form of
positions of multiple individuals or even raw images. Once generated,
these representations, called embedding manifolds, can be used in a
class of machine learning algorithms, called manifold learning, for
analysis and classification. A similar approach is successfully imple-
mented in human activity recognition (Elgammal and Lee, 2007;
Blackburn and Ribeiro, 2007), face recognition (Yang, 2002), pose
estimation (Elgammal and Lee, 2007; BenAbdelkader, 2010), explora-
tion of video sequences (Pless, 2003), and handwriting recognition
(Tenenbaum et al., 2000). If the difference between two such high-
dimensional points is accurately represented by the Euclidean
distance between them (Kirby, 2001), linear dimensionality reduc-
tion methods, such as principal components analysis and singular
value decomposition can be used. These methods transform the
dataset along directions of maximum variability, thereby preserving
relative configuration. If the points on the input data cannot be
faithfully differentiated by the Euclidean distance, nonlinear methods
such as isometric mapping (Isomap) (Tenenbaum et al., 2000) and
local linear embedding (LLE) (Roweis and Saul, 2000; Saul and
Roweis, 2003; Wang et al., 2004) may be used. As an example, the
distance between two cities on earth is correctly represented along
the great circle (geodesic) and not a straight line (Cox and Cox, 1991).
Similarly, images of human faces or handwritten letters are not
usefully separated by a linear difference of intensity values
(Tenenbaum et al., 2000). In earlier work, we have used Isomap to
show that dimensionality of the low-dimensional embedding created
from images of self-propelled particles is indicative of the degree of
coordination (Abaid et al., 2012) as well as the number of subgroups
(DeLellis et al., 2013). In contrast to the frame-by-frame classification
method that is developed in this paper, inferences from the dimen-
sionality of the embedding manifold in Abaid et al. (2012) and

DeLellis et al. (2013) are made on the basis of long sequences,
comprising a few thousand frames.

The application of manifold learning for analysis and classification
begins with the collection of training data for sampling the input
space. The success of manifold learning in image-based analysis
depends on several factors, including the variability and number of
training images (Law and Jain, 2006) and image representation
(Pless, 2003; Souvenir and Pless, 2007). In face recognition, for
example, a large number of centered images of the subject are used
to exhaustively sample the expected embedding space (Tenenbaum
et al., 2000; Roweis and Saul, 2000). Similarly, for pose estimation,
multiple viewpoints and extended videos of human activity are used
as training data (Elgammal and Lee, 2007). Whereas humans can be
requested to move in a specific manner, achieving a similar task with
real animals is impractical. Consequently, individual frames are
tagged by experts to quantify specific behaviors followed by classi-
fication on the basis of goodness of fits (Kopman et al., 2013).

We investigate the possibility of using generative models to
create training images of collective behavior that can then be used
to classify real videos. A generative model is a probabilistic relation
that maps features to observations; for example, the probability of
an image of an animal group given the number of subgroups. Once
a generative model is available, it may also be inverted so that
features can be extracted from observations (Silva and Tenenbaum,
2003; Mann et al., 2011). To create training images, we generate
particle positions that emphasize variations of group features and
project them on a two-dimensional image plane. In this data-
driven approach, we do not propose a new model of collective
behavior, rather a method to generate images of group configura-
tions and trajectories that efficiently sample an underlying feature
space. We use the Isomap algorithm to embed these images on a
low-dimensional manifold (Fig. 1a). The Isomap algorithm approx-
imates the embedding manifold in the higher dimensional space
by first constructing geodesics between pairs of points. It then
uses classical multidimensional scaling to construct a low-
dimensional representation between points to generate an iso-
metric embedding. That is, distances within the manifold infini-
tesimally respect the Euclidean distances (Cox and Cox, 2000).
(More details on the Isomap algorithm are given in Section 3.)
Next, we learn the manifolds by deriving two invertible mappings:
one from the manifold to the input images and the other from the

Fig. 1. (a) We use generative models to create synthetic training images that match a far-field view of animal groups. The training images are then compactly represented by
the Isomap algorithm to a low-dimensional form called the embedding manifold. (b) We then derive invertible functions from the embedding manifold to the training
images as well as to the group features. (c) The mappings are subsequently used to classify raw images of collective behavior.
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