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H I G H L I G H T S

� A general algorithm underlying significant dichotomic partitions of the code is presented.
� The complementarity to codons arises as a coherent dichotomy of this algorithm.
� The algorithm mirrors operations having a real counterpart in the decoding center of the ribosome.
� Dichotomic classes are very symmetric with respect to the bijective transformations in the code.
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a b s t r a c t

Dichotomic classes arising from a recent mathematical model of the genetic code allow to uncover many
symmetry properties of the code, and although theoretically derived, they permitted to build statistical
classifiers able to retrieve the correct translational frame of coding sequences. Herein we formalize the
mathematical properties of these classes, first focusing on all the possible decompositions of the 64
codons of the genetic code into two equally sized dichotomic subsets. Then the global framework of
bijective transformations of the nucleotide bases is discussed and we clarify when dichotomic partitions
can be generated. In addition, we show that the parity dichotomic classes of the mathematical model and
complementarity dichotomic classes obtained in the present article can be formalized in the same
algorithmic way the dichotomic Rumer's degeneracy classes. Interestingly, we find that the algorithm
underlying dichotomic class definition mirrors biochemical features occurring at discrete base positions
in the decoding center of the ribosome.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The genetic code is a set of 64 lemmas, called codons, encom-
passing all the combinations of four letters, or nucleotide bases
(G;A;U;C), in groups of three (the number of bases per codon). The
genetic code instructs the translational machinery to correctly
incorporate one of the 20 naturally occurring amino acids into a
growing polypeptide chain, using the information encoded in the
mRNA nucleotide sequence as template. In this decoding process
tRNAs are used as adaptor molecules, charged on one end with the
pertinent amino acid, while providing on another site a specific
anticodon sequence, capable to base pair with the codon.

The genetic code was cracked in the 1960s by a series of
enlightening experiments, proving the absence of commas or gaps
(i.e. each base in the coding sequence of the mRNA is part of a
codon), as well as the non-overlapping nature of the code (i.e. each

base in the coding sequence belongs to only one codon). The mapping
of 64 codons to 20 amino acids (and 3 stop signals) implicates that the
code is highly degenerate (Crick, 1968; Woese, 1965). Part of the
degeneracy of the code is provided by isoaccepting tRNAs that are
charged with the same amino acid but recognize different (synon-
ymous) codons. The remaining degeneracy derives by wobble pairing,
in which the third base of a codon is allowed to form a shifty non-
Watson-Crick base pair with the anticodon (Agris et al., 2007).

The study of the degeneracy of the genetic code and its
biological implications have been subject of intensive research
over the years, and it is still debated whether the natural code is a
frozen accident or a honed product of evolution, or perhaps both.
However, several studies provided evidence of inherent advan-
tages of the natural code over other possible ones, suggesting a
non-randomness of its degeneracy (Vogel, 1998; Itzkovitz and
Alon, 2007; Freeland et al., 2000; Di Giulio, 2005).

One of the first to address these questions from a theoretical
point of view was the Russian physicist Rumer (1969). He showed
that codons can be divided into two classes of 32 codons each:
the first Rumer class identifies amino acids with degeneracy 4
(for which first two bases of the triplet are sufficient to define
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unambiguously the amino acid), while the second one specifies
amino acids with degeneracy non-4 (i.e. 1, 2 or 3). One funda-
mental aspect behind the duality of Rumer's classes was the
identification of a global bijective transformation of bases

r : fA;C;G;Ug-fA;C;G;Ug

A↦C

C↦A

G↦U

U↦G

able to transform respectively degeneracy 4 class codons into
degeneracy non-4 class ones, and viceversa. We will abbreviate
this transformation, which is called Rumer's transformation, by

r : U;C;A;G-G;A;C;U:

Later Jestin and Soulé noticed that r is not the unique bijective
transformation of the set of codons which converts one Rumer's
class into the other (see Jestin and Soulé, 2007; Jestin, 2006).
However the bijective transformation they found acts different
in different bases of the codon, hence it is not induced by a
transformation on the set of bases.

Recently, the degeneracy distribution of the code has been
addressed by an interesting mathematical model based on non-
power representation of integer numbers (Gonzalez et al., 2008).
In this model, a 6 digit binary string is assigned to each of the 64
codons together with an integer number from 0 to 23, identifying
the corresponding amino acid or stop codon. It has been demon-
strated that the unique 6 digit set of non-power bases 1, 1, 2, 4, 7, 8
can exactly represent the degeneracy distribution of the genetic
code (Gonzalez, 2008). The mathematical properties of these
length-6 binary strings led to the definition of dichotomic classes,
i.e. non-linear functions of the information of two adjacent bases,
that are intimately linked with the chemical properties of the
codon bases, as well as with the duality of Rumer's codon classes.
In particular, it was shown that the parity of a codon, defined as
the parity of the associated binary string, can be obtained from the
chemical class (weak/strong, keto/amino, purine/pyrimidine) of
the last two bases of the codon. The transformation of bases
exchanging A and G as well as C and U converts one parity class
into another one:

p : U;C;A;G-C;U;G;A:

Furthermore it has been shown that the same algorithmic rules
defining the parity of a codon, also hold for the determination of
the Rumer's degeneracy class, when the algorithm is applied to the
first and the second base of the codon ðb2-b1Þ, instead of the
second and the third one ðb3-b2Þ. Consequently, it has been
shown that a third dichotomic class, the hidden class, can be
computed by shifting the dinucleotide window further upstream,
with the algorithm rules operating on the first base of one codon
and the last base of the previous one (Gonzalez et al., 2008;
Giannerini et al., 2012).

Statistically significant short-range correlations between spe-
cific combinations of dichotomic classes have been observed in
coding sequences (Gonzalez et al., 2008). Strikingly, such correla-
tions appear universal, as they have been detected in a set of both
prokaryotic and eukaryotic sequences, irrespectively of their base
composition or GC content . In addition, it has been shown that the
three dichotomic classes (parity, hidden and Rumer) are linked to
the Klein V group through the set of global transformations (c, p, r)
acting on a codon, highlighting almost periodic structures related

to the short-range organization of coding sequences, in analogy
with the properties of quasi-crystals (Gonzalez et al., 2008;
Giannerini et al., 2012).

Thus, the mathematical model opened unexpected perspectives
to investigate the degeneracy and encoding of the genetic code
through the lens of non-linear classifiers represented by the
dichotomic classes, both from the theoretical and from the biolo-
gical point of view. In fact, the short-range correlations between
dichotomic classes have been successfully exploited to build statis-
tical classifiers able to retrieve the correct translational frame of
coding sequences, using the information contained in only nine
codons (Giannerini et al., 2012). This is a strong indication that,
together with the renowned Rumer dichotomy, the parity and the
hidden classes, although theoretically derived, reflect a local infor-
mational structure of the reading frame that may be of great
interest to molecular biologists and bioinformaticians.

In the present paper we contribute to the formalization of the
model with a detailed analysis of the mathematical properties
arising when the dichotomic classes are defined circularly on the
codon. We will show in Section 2 that the codon complementarity
(corresponding to the anticodon sequence read in 3′45′ direc-
tion) can be obtained analogously to the Rumer and parity
dichotomic classes discussed above, if we order the dinucleotide
bases of a codon circularly ðb3-b2-b1-b3Þ.

A general algorithm underlying all three dichotomies will be
presented and illustrated in Section 3. This algorithm, derived
from that of Gonzalez and collaborators (Gonzalez et al., 2008),
classifies codons into dichotomic classes based on two questions
that are successively asked about two out of the three nucleotide
bases in a codon. There are three kinds of such questions: the first
one relates to energy (number of hydrogen bonds) formed
between complementary codon and anticodon bases (weak/
strong; W=S; fA;Ug=fG;CgÞ, the second one asks for the presence
of an electron donor or acceptor group in the nitrogen atom of the
base (keto/amino groups; K=Am; fA;Cg=fU;Gg), the third one asks
for a space configuration of the base (purine/pyrimidine;
R=Y ; fA;Gg=fU;Cg). We will show that the algorithm enquires for
these different chemical/physical questions at discrete base posi-
tions of the codon, and show that these theoretical questions have
a biological counterpart in the way the ribosome interacts with the
codon–anticodon duplex in the decoding center.

Finally, it will be shown in Section 4 which transformations of
the nucleotide bases can induce dichotomic partitions of
sequences of nucleotide bases (not only triplets). We will deter-
mine the number of such possible partitions and it is shown that
the same partition may be induced by several transformations.

2. Dichotomic classes: complementarity dichotomy

Let us denote the ribonucleotide bases alphabet as

B≔fU;C;A;Gg:

Easy combinatorics show that there are exactly Cð4;2Þ=2¼ 3
possibilities to partition B into two disjoint parts of equal size:

B¼ fC;Gg [ fA;Ug; B¼ fC;Ag [ fU;Gg; B¼ fC;Ug [ fA;Gg

where Cð4;2Þ is the binomial coefficient. Remarkably, each of this
partitions has a biological or chemical meaning: The first partition
divides the set into ‘strong’ and ‘weak’ bases, the second divides
the set into amino and keto nucleotide bases and the third
partition into pyrimidines and purines. In Gonzalez et al. (2008)
it was shown that the parity and Rumer's dichotomic classes arise
the same algorithmic way. To define the parity classes we consider
the last two bases of a codon and classify it asking if the last base is
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