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a b s t r a c t

Bayesian inference is now a leading technique for reconstructing phylogenetic trees from aligned
sequence data. In this short note, we formally show that the maximum posterior tree topology provides a
statistically consistent estimate of a fully resolved evolutionary tree under a wide variety of conditions.
This includes the inference of gene trees from aligned sequence data across the entire parameter range of
branch lengths, and under general conditions on priors in models where the usual ‘identifiability’
conditions hold. We extend this to the inference of species trees from sequence data, where the gene
trees constitute ‘nuisance parameters’, as in the program nBEAST. This note also addresses earlier
concerns raised in the literature questioning the extent to which statistical consistency for Bayesian
methods might hold in general.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Bayesian inference has become a mainstream approach for
inferring phylogenetic tree topology from aligned DNA sequence
data (Lemey et al., 2009). The approach has a number of desirable
features, and there exist powerful software packages for analysing
genetic sequence data in this way. At the same time, some potential
theoretical limitations of Bayesian phylogenetics have been identified
and studied. These include potential problems with the convergence
of MCMC-based Bayesian methods (Mossel and Vigoda, 2005), and
properties that appear to be surprising at first, such as the Bayesian
star ‘paradox’ (Steel and Matsen, 2007; Susko, 2008; Yang, 2007).

A further property of Bayesian phylogentic inference was raised
in a simulation study of Kolackzkowski and Thornton (2009),
suggesting that Bayesian methods applied to unresolved four-leaf
trees (with a zero-length interior edge) with certain combinations
of long/short pendant branches tended to show increasing bias
towards one of the three particular resolved trees as the sequence
length increased. By contrast, maximum likelihood was found to
favour each of the three resolutions equally. Kolackzkowski and
Thornton (2009) initially suggested the possibility that for data
generated by a resolved four-leaf tree with a certain combination
of short and long edges, Bayesian inference might even be
statistically inconsistent (i.e. the tree with the highest posterior
probability for the data being different from the tree that gener-
ated the data, with a probability that does not tend to zero as the
sequence length grows) even for models for which maximum
likelihood is known to be statistically consistent (Chang, 1996).
While Kolackzkowski and Thornton (2009) stepped back from this
suggestion in a subsequent correction to their original paper, the
issue drew attention to a lack of a formal proof of the statistical
consistency of Bayesian inference for in molecular phylogenetics.
We provide this here by establishing a more general result that
includes the phylogenetic setting as a particular case.

This enhanced generality serves a further purpose, as it allows us
to establish formally the statistical consistency of Bayesian species

tree estimation directly from sequence data where the gene trees
(and their branch lengths) are treated as further ‘nuisance para-
meters’ (as in the program nBEAST, Heled and Drummond, 2010).

While it might be possible that these results could be derived
from other theoretical results in Bayesian statistics, we provide
here a self-contained and essentially elementary proof that is
tailored towards easy application in the phylogenetic setting. This
follows the spirit of Joseph Chang's tailored version of Wald's
theorem that provided a convenient tool to check and establish
the consistency of maximum likelihood in phylogenetics (Chang,
1996), and which curtailed an unproductive debate in the litera-
ture about whether the detailed theoretical assumptions of Wald's
original theorem applied.

2. A general result

Consider the general problem of identifying a discrete parameter
lying in an arbitrary finite set A from a sequence of independent and
identically distributed (i.i.d.) observations that take values in an
arbitrary finite set U. Suppose further that the probability distribution
on U is determined not just by the discrete parameter aAA but also
by some additional (nuisance) parameters. In this paper, we will
assume that these additional parameters are continuous, and we
denote the parameter space associated with each discrete parameter
aAA by ΘðaÞ. We assume throughout that ΘðaÞ is an open subset of
some Euclidean space.

In the usual phylogenetic setting, A is the set of fully resolved
(binary) phylogenetic tree topologies on a given leaf set, U is the
set of possible site patterns, and the parameter set ΘðaÞ specifies,
for the tree topology a the branch lengths of the tree each of which
lies in the range ð0;1Þ, and possibly other parameters relevant to
the model. Thus, if we are only concerned with branch lengths,
and trees are unrooted, then ΘðaÞ ¼ ð0;1Þ2n�3 where n is the
number of leaves of tree a. The trees in A may be either rooted or
unrooted, and for reconstruction we estimate the same type of
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tree (thus in the rooted case, the branch lengths are assumed to be
ultrametric).

Returning to the general set-up, let pða;θÞ denote the probability
distribution on some finite set U determined by the discrete-
continuous parameter pair ða;θÞ. Suppose we have a discrete
(prior) probability distribution π on A, and, for each aAA, a
continuous (prior) probability distribution on ΘðaÞ with a prob-
ability density function f aðθÞ. We will suppose that the following
conditions hold for all aAA:

(C1) πðaÞ40;
(C2) the density f aðθÞ is continuous, bounded and nonzero on

ΘðaÞ;
(C3) the function θ↦pða;θÞðuÞ is continuous and nonzero on ΘðaÞ

for each uAU;
(C4) for all θAΘðaÞ, and all baa, we have:

infθ′AΘðbÞdðpða;θÞ; pðb;θ′ÞÞ40.

In (C4) and henceforth, d denotes the L1 metric – that is, for any
two probability distributions p; q on U: dðp; qÞ≔∑uAU jpðuÞ�qðuÞj:

In the phylogenetic setting, if π is any of the usual nonzero
priors on binary phylogenetic trees (e.g. the uniform ‘proportional
to distinguishable arrangements’ or PDA distribution, or the Yule
distribution), then condition (C1) is satisfied. If we take the usual
exponential prior on branch lengths then condition (C2) is
satisfied. For all Markov processes on trees, condition (C3) holds
(the nonzero condition holds, since in any tree with pendant edges
of positive lengths all site patterns have a strictly positive prob-
ability). Finally, for all models for which identifiability holds (e.g.
the general time-reversible (GTR) model or any submodel down to
the highly restrictive Jukes–Cantor model), condition (C4) holds
(see e.g. Steel and Székely, 2009; a specific lower bound on d for
the two-state symmetric model is provided via Lemma 7.3 of Steel
and Székely, 2007).

Now, suppose we are given a sequence u¼ ðu1;…;ukÞAUk

generated i.i.d. by some unknown pair ða;θÞ and we wish to identify
the discrete parameter (a) from u given prior densities on A and the
continuous parameters. The maximum a-posteriori (MAP) estimator
selects the element bAA that maximizes the posterior probability
of b given u – that is, it maximizes πðbÞEθ′½Pðujb;θ′Þ�, where

Pðujb;θ0Þ ¼ ∏
k

i ¼ 1
pðb;θ′ÞðuiÞ; ð1Þ

which is the probability of generating the sequence of i.i.d.
observations ðu1;…;ukÞ from the underlying parameters ðb;θ′Þ,
and where Eθ′ refers to taking expectation with respect to the prior
probability distribution on ΘðbÞ.

Let Pða;θ; kÞ denote the probability that, for a sequence u1;…;uk

generated i.i.d. by ða;θÞ, the MAP estimator correctly selects a. The
following theorem establishes a sufficient condition for the statis-
tical consistency of the MAP estimator in this context.

Theorem 1. Provided conditions (C1)–(C4) hold for all aAA, then

lim
k-1

Pða;θ; kÞ ¼ 1

for all aAA, and θAΘðaÞ.

Proof. Our proof relies on a general but technical lemma, the
proof of which we defer to the Appendix. □

Lemma 2. For any ϵ1; ϵ240 there exists a value δ40 for which the
following holds: for any finite set U, and any four probability
distributions p; q; r; s on U that satisfy the three conditions:

(i) dðp; qÞZϵ1;
(ii) for all uAU with rðuÞ40, pðuÞZϵ2 and qðuÞ40;
(iii) dðp; rÞoδ and dðp; sÞoδ;

the quantity Q ¼∑uAU:rðuÞ40rðuÞ log ðsðuÞ=qðuÞÞ is well defined (i.e.
logarithms are applied to positive quantities) and QZ1

3ϵ
2
1.

2.1. Application to the proof of Theorem 1

To apply Lemma 2 we need to define the quantities mentioned
by it, and we will do this in the order p; s then q; r followed by ϵ1
and ϵ2. Notice first that the statement of Lemma 2 is sufficiently
general to allow (but not require) for q; r and s to depend on the
data (i.e. to be random variables), as will be the case in our
application of the lemma. This causes no problem for the argu-
ment, as we remark at the end of the proof.

We suppose throughout that the sequence u¼ u1;…;uk is
generated i.i.d. by ða;θ0Þ where θ0 is any particular element of
Θða). Then the MAP estimator will correctly select a from u if and
only if the Bayes Factor defined by

BFa=b ¼
πðaÞEθ ½Pðuja;θÞ�
πðbÞEθ′½Pðujb;θ′Þ�

is strictly greater than 1 for all baa. By the Bonferroni inequality,
it suffices to show that for each baa the probability that u is such
that BFa=b41 tends to 1 as k grows. To achieve this we first
observe that BFa=b ¼ ðπðaÞ=πðbÞÞ � Ra=b where

Ra=b≔
Eθ ½Pðuja;θÞ�
Eθ′½Pðujb;θ′Þ�

; ð2Þ

and where πðaÞ=πðbÞ is finite and strictly positive by (C1). Thus, it
suffices to show that, for each baa and for every finite constantM,
the inequality Ra=b4M holds with a probability that tends to 1 as
k-1. We will establish this inequality by providing an explicit
lower bound to the numerator of Ra/b and an explicit upper bound
to the denominator of Ra/b, and showing that, with probability
tending to 1 as k grows, their ratio exceeds M.

Before describing the lower bound, observe that we can re-
write Eq. (1) as follows:

Pðujb;θÞ ¼ ∏
uAU

pðb;θÞðuÞnu ; ð3Þ

where, for each uAU,

nu≔jfi : ui ¼ ugj:
For the lower bound on the numerator of Ra/b, consider the

subset Nτ of ΘðaÞ consisting of a closed ball centered on θ0 and of
radius τ40. Note that we can always select a sufficiently small
value of τ40 for which Nτ �ΘðaÞ by the assumption that ΘðaÞ is
an open subset of some Euclidean space. Letting
μðNτÞ ¼

R
Nτ

f aðθÞ dθ40 we have

Eθ ½Pðuja;θÞ� ¼
Z
ΘðaÞ

Pðuja;θÞf aðθÞ dθZ
Z
Nτ

Pðuja;θÞf aðθÞ dθ;

and so

Eθ ½Pðuja;θÞ�ZμðNτÞ � inf
θANτ

fPðuja;θÞg: ð4Þ

2.2. Lower bound and the distributions p and s

Let p¼ pða;θ0Þ (the generating probability distribution on the
true parameters) and let s be the probability distribution of the
form pða;θÞ that minimizes Pðuja;θÞ when θ is restricted to Nτ; such
a distribution s exists from the compactness of Nτ and the
continuity condition of (C3). Then, from (3) we have:
infθANτ

fPðuja;θÞg ¼∏uAUsðuÞnu : Applying this to (4) gives

Eθ ½Pðuja;θÞ�ZμðNτÞ � ∏
uAU

sðuÞnu : ð5Þ
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