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Bayesian inference is now a leading technique for reconstructing phylogenetic trees from aligned
sequence data. In this short note, we formally show that the maximum posterior tree topology provides a
statistically consistent estimate of a fully resolved evolutionary tree under a wide variety of conditions.
This includes the inference of gene trees from aligned sequence data across the entire parameter range of
branch lengths, and under general conditions on priors in models where the usual ‘identifiability’

conditions hold. We extend this to the inference of species trees from sequence data, where the gene
trees constitute ‘nuisance parameters’, as in the program *BEAST. This note also addresses earlier
concerns raised in the literature questioning the extent to which statistical consistency for Bayesian
methods might hold in general.
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1. Introduction

Bayesian inference has become a mainstream approach for
inferring phylogenetic tree topology from aligned DNA sequence
data (Lemey et al., 2009). The approach has a number of desirable
features, and there exist powerful software packages for analysing
genetic sequence data in this way. At the same time, some potential
theoretical limitations of Bayesian phylogenetics have been identified
and studied. These include potential problems with the convergence
of MCMC-based Bayesian methods (Mossel and Vigoda, 2005), and
properties that appear to be surprising at first, such as the Bayesian
star ‘paradox’ (Steel and Matsen, 2007; Susko, 2008; Yang, 2007).

A further property of Bayesian phylogentic inference was raised
in a simulation study of Kolackzkowski and Thornton (2009),
suggesting that Bayesian methods applied to unresolved four-leaf
trees (with a zero-length interior edge) with certain combinations
of long/short pendant branches tended to show increasing bias
towards one of the three particular resolved trees as the sequence
length increased. By contrast, maximum likelihood was found to
favour each of the three resolutions equally. Kolackzkowski and
Thornton (2009) initially suggested the possibility that for data
generated by a resolved four-leaf tree with a certain combination
of short and long edges, Bayesian inference might even be
statistically inconsistent (i.e. the tree with the highest posterior
probability for the data being different from the tree that gener-
ated the data, with a probability that does not tend to zero as the
sequence length grows) even for models for which maximum
likelihood is known to be statistically consistent (Chang, 1996).
While Kolackzkowski and Thornton (2009) stepped back from this
suggestion in a subsequent correction to their original paper, the
issue drew attention to a lack of a formal proof of the statistical
consistency of Bayesian inference for in molecular phylogenetics.
We provide this here by establishing a more general result that
includes the phylogenetic setting as a particular case.

This enhanced generality serves a further purpose, as it allows us
to establish formally the statistical consistency of Bayesian species
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tree estimation directly from sequence data where the gene trees
(and their branch lengths) are treated as further ‘nuisance para-
meters’ (as in the program *BEAST, Heled and Drummond, 2010).

While it might be possible that these results could be derived
from other theoretical results in Bayesian statistics, we provide
here a self-contained and essentially elementary proof that is
tailored towards easy application in the phylogenetic setting. This
follows the spirit of Joseph Chang's tailored version of Wald's
theorem that provided a convenient tool to check and establish
the consistency of maximum likelihood in phylogenetics (Chang,
1996), and which curtailed an unproductive debate in the litera-
ture about whether the detailed theoretical assumptions of Wald's
original theorem applied.

2. A general result

Consider the general problem of identifying a discrete parameter
lying in an arbitrary finite set A from a sequence of independent and
identically distributed (i.i.d.) observations that take values in an
arbitrary finite set U. Suppose further that the probability distribution
on U is determined not just by the discrete parameter a € A but also
by some additional (nuisance) parameters. In this paper, we will
assume that these additional parameters are continuous, and we
denote the parameter space associated with each discrete parameter
a e A by ©(a). We assume throughout that @(a) is an open subset of
some Euclidean space.

In the usual phylogenetic setting, A is the set of fully resolved
(binary) phylogenetic tree topologies on a given leaf set, U is the
set of possible site patterns, and the parameter set ©(a) specifies,
for the tree topology a the branch lengths of the tree each of which
lies in the range (0, c0), and possibly other parameters relevant to
the model. Thus, if we are only concerned with branch lengths,
and trees are unrooted, then @(a)=(0,00)** > where n is the
number of leaves of tree a. The trees in A may be either rooted or
unrooted, and for reconstruction we estimate the same type of
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tree (thus in the rooted case, the branch lengths are assumed to be
ultrametric).

Returning to the general set-up, let p, o, denote the probability
distribution on some finite set U determined by the discrete-
continuous parameter pair (a,d). Suppose we have a discrete
(prior) probability distribution z on A, and, for each aeA, a
continuous (prior) probability distribution on @(a) with a prob-
ability density function f,(6). We will suppose that the following
conditions hold for all a € A:

(C1) z(a)>0;

(C2) the density f,(0) is continuous, bounded and nonzero on
O(a);

(C3) the function @—pe,(u) is continuous and nonzero on &(a)
for each ue U;

(C4) for all @ € O(a), and all b # a, we have:

infy c o) d(P(.6)> Pv.o)) > O

In (C4) and henceforth, d denotes the L; metric - that is, for any
two probability distributions p,q on U: d(p, q):==Y, c ulp(t)—q(u)|.

In the phylogenetic setting, if 7 is any of the usual nonzero
priors on binary phylogenetic trees (e.g. the uniform ‘proportional
to distinguishable arrangements’ or PDA distribution, or the Yule
distribution), then condition (C1) is satisfied. If we take the usual
exponential prior on branch lengths then condition (C2) is
satisfied. For all Markov processes on trees, condition (C3) holds
(the nonzero condition holds, since in any tree with pendant edges
of positive lengths all site patterns have a strictly positive prob-
ability). Finally, for all models for which identifiability holds (e.g.
the general time-reversible (GTR) model or any submodel down to
the highly restrictive Jukes—Cantor model), condition (C4) holds
(see e.g. Steel and Székely, 2009; a specific lower bound on d for
the two-state symmetric model is provided via Lemma 7.3 of Steel
and Székely, 2007).

Now, suppose we are given a sequence u= (i, ...,u) e U¥
generated i.i.d. by some unknown pair (a, ) and we wish to identify
the discrete parameter (a) from u given prior densities on A and the
continuous parameters. The maximum a-posteriori (MAP) estimator
selects the element b € A that maximizes the posterior probability
of b given u - that is, it maximizes z(b)Ey [P(u|b, 8")], where

k
Pub,0) = '1:11 Do) (U), (1)

which is the probability of generating the sequence of i.i.d.
observations (uj,...,u;) from the underlying parameters (b,8"),
and where Ey refers to taking expectation with respect to the prior
probability distribution on @(b).

Let P(a, 0, k) denote the probability that, for a sequence uy, ..., uy
generated i.i.d. by (a, 8), the MAP estimator correctly selects a. The
following theorem establishes a sufficient condition for the statis-
tical consistency of the MAP estimator in this context.

Theorem 1. Provided conditions (C1)-(C4) hold for all a € A, then
klim P(a,0,k)=1

forall ae A, and 6 € O(a).

Proof. Our proof relies on a general but technical lemma, the
proof of which we defer to the Appendix. ©

Lemma 2. For any €1, €, > 0 there exists a value 6 > 0 for which the
following holds: for any finite set U, and any four probability
distributions p,q,r,s on U that satisfy the three conditions:

(i) dp,q) = €1;
(ii) for all u e U with r(u) > 0, p(u) > €3 and q(u) > 0;
(iii) d(p,r) <6 and d(p,s) < o;

the quantity Q = Yy c urw > or(W) log (s(u)/q(u)) is well defined (i.e.
logarithms are applied to positive quantities) and Q > 1e3.

2.1. Application to the proof of Theorem 1

To apply Lemma 2 we need to define the quantities mentioned
by it, and we will do this in the order p,s then g, r followed by €,
and e;. Notice first that the statement of Lemma 2 is sufficiently
general to allow (but not require) for q,r and s to depend on the
data (i.e. to be random variables), as will be the case in our
application of the lemma. This causes no problem for the argu-
ment, as we remark at the end of the proof.

We suppose throughout that the sequence u=uy,...,u; is
generated i.i.d. by (a,8y) where 6y is any particular element of
©(a). Then the MAP estimator will correctly select a from u if and
only if the Bayes Factor defined by

_ m(@)Ey[P(ula, 0)]

B = 2 by, (Prulb, 0]

is strictly greater than 1 for all b # a. By the Bonferroni inequality,
it suffices to show that for each b # a the probability that u is such
that BF,;, >1 tends to 1 as k grows. To achieve this we first
observe that BF,, = (w(a)/7(b)) - R/, where

Eg[P(uja,0)]

T @

and where z(a)/z(b) is finite and strictly positive by (C1). Thus, it
suffices to show that, for each b # a and for every finite constant M,
the inequality R,/ > M holds with a probability that tends to 1 as
k—oo. We will establish this inequality by providing an explicit
lower bound to the numerator of Ry, and an explicit upper bound
to the denominator of Ry, and showing that, with probability
tending to 1 as k grows, their ratio exceeds M.

Before describing the lower bound, observe that we can re-
write Eq. (1) as follows:

P(ulb,0) = Hup(b,f))(u)n“a 3)

where, for each ueU,
ny:=|{i : uj=u}|.

For the lower bound on the numerator of Ry, consider the
subset N of @(a) consisting of a closed ball centered on @, and of
radius 7> 0. Note that we can always select a sufficiently small
value of 7 > 0 for which N; c @(a) by the assumption that @(a) is
an open subset of some Euclidean space. Letting
HU(No) = [y fa(6) dO >0 we have

Ey[P(ula, 0)] = /@ | Pa 0, (0) d0 = /N Pula, 0)f () do.

and so

Eg[P(uja,0)] = u(N.) - gig,g {P(ula, 0)}. “4)

2.2. Lower bound and the distributions p and s

Let p=pg, (the generating probability distribution on the
true parameters) and let s be the probability distribution of the
form pq ¢, that minimizes P(u|a, @) when @ is restricted to N;; such
a distribution s exists from the compactness of N, and the
continuity condition of (C3). Then, from (3) we have:
infy .y, {P(ula, )} =[]ucusw)™. Applying this to (4) gives
Eg[P(ula, 0)] = u(Nz) - T s)™. (5)
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