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H I G H L I G H T S

� A discrete model of the complex interactions between tumor and immune populations.
� Explain many biologically observed and some potential tumor states and dynamics.
� Providing insight into the future behaviors of the tumor.
� Even an avascular tumor could become invasive under certain conditions.
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a b s t r a c t

Clinicians and oncologists believe that tumor growth has unpredictable dynamics. For this reason they
encounter many difficulties in the treatment of cancer. Mathematical modeling is a great tool to improve
our better understanding of the complicated biological system of tumor growth. Also, it can help to
identify states of the disease and as a result help to predict later behaviors of the tumor. Having an
insight into the future behaviors of the tumor can be very useful for the oncologists and clinicians to
decide on the treatment method and dosage of the administered drug. This paper suggests that a suitable
model for the tumor growth system should be a discrete model capable of exhibiting periodic and
complex chaotic dynamics. This is the key feature of the proposed model. The model is validated here
through experimental data and its potential dynamics are analyzed. The model can explain many
biologically observed tumor states and dynamics, such as exponential growth, and periodic and chaotic
behaviors in the steady states. The model shows that even an avascular tumor could become invasive
under certain conditions.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer is becoming the leading cause of death around the
world but our overall knowledge of its causes, methods of
prevention and cure is still in its infancy. One great tool that has
shown its potential in our better understanding of such a compli-
cated biological system is mathematical modeling (Cristini
and Lowengrub, 2010; Preziosi, 2003; Tan and Hanin, 2008;
Moghtadaei et al., 2012). Mathematical models provide realistic
and quantitative representations of important biological phenom-
ena, and biological interpretation of their results can give insight
to make realistic predictions of the state of disease under different
conditions (Swanson et al., 2003).

The idea of using mathematical models for cancer was intro-
duced in 1955 by Thomlinson and Gray (1955). After that, many
mathematical models for tumor growth have been developed and
the application of these models has been increased recently
(Bonate, 2011; Hwang et al., 2009; Moghaddasi et al., 2012;
Rejniak and Anderson, 2011; Moreira and Deutsch, 2002). What
makes mathematical models of tumor growth interesting is that
they can be simple but indeed still indicate the complicated
interactions involved (Sachs et al., 2001). The tumor growth
dynamics and the antitumor immune response dynamics in vivo
are very complex (Galach, 2003), and not well understood mainly
because in most of states, the measurements are impossible
in vivo. Models are not only able to explain many phenomena
observed in vivo, but they could also provide a good insight about
the phenomena that are unobservable in vivo.

Major causes of the complexity in the tumor system are the
diversity of levels of the tumor system (gene, molecular, cellular,
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tissue, organ, body and population), different time scales of each
level, self-organization of the system, multitude of signaling
pathways and tumor–immune and tumor–environment interac-
tions (d'Onofrio et al., 2010; Robertson-Tessi et al., 2012; Bellomo
and Preziosi, 2000; Kiyoshi et al., 1988). In theory, this complexity
can lead to an emergence of different types of attractors (fixed
point, limit cycle, and even strange attractor) (Liu et al., 2009;
Kuznetsov et al., 1994; Ahmed, 1992). In fact, one can also
experimentally demonstrate the existence of these limit cycles
and strange attractors as a result of the complex dynamics of the
tumor system (Ivancevic et al., 2008a; El-Gohary, 2008; Rew,
1999). These strange behavior of tumors can be addressed based
on the inherent properties of chaos (Lorenz, 1963), such as
sensitive dependence on initial conditions. Sensitive dependence
on initial conditions makes the tumor growth patterns case specific,
i.e. evolution of cancer for any patient is different from another
patient, due to the different initial conditions for any individual.
While this is a challenging issue for the oncologists, this is a very
interesting topic in the field of tumor modeling. For these reasons,
chaos theory could allow a better understanding of this complex
system (Denis and Letellier, 2012a, 2012b; Letellier et al., 2013;
Obcemea, 2006). The main connecting points between chaos and
carcinogenesis have been described by Denis and Letellier recently
(Denis and Letellier, 2012a).

On the other hand, the cell cycles with characteristic doubling
times in the mitosis stage, makes the tumor growth system a
discrete time system (Obcemea, 2006). This is a good reason to say
that cancer models should be discrete maps and not some
continuous differential equations. In addition, as mentioned above,
it is also known that the tumor can grow, regress, and re-grow in
an oscillatory manner (Ivancevic et al., 2008a; Obcemea, 2006; Siu
et al., 1986). Discretizing a continuous model can recover oscilla-
tions in tumor dynamics that might have been smoothened in the
continuous counterparts.

Considering these mentioned properties, an optimum model
for the tumor growth system is a discrete model that can exhibit
different behaviors of the tumor system, i.e. exponential growth
approaching to an asymptotic value, periodic and chaotic beha-
viors, and to have different attractors, i.e. fixed point, limit cycle
and strange attractor for different parameter values.

In this article we propose a discrete model of tumor growth in a
macroscopic scale which includes the tissue level growth phe-
nomena, keeping in mind the mesoscopic interaction of tumor and
immune cells. This model is a discrete map that is developed using
different time lags in its continuous counterpart. The model is
validated using experimental data. The dynamics of the model is
analyzed using some numerical simulations by means of comput-
ing Lyapunov Exponents spectrum, bifurcation diagram, phase
portraits, and first return maps to the Poincare section.

In the following sections, first the formulation of the contin-
uous and its discrete form is described, and then the stability of
the fixed points of the model is analyzed. Next, the requirements
of chaos in a discrete map and our methods to measure them are
briefly explained. Subsequently, the results of our analysis on the
behavior of this map are reported, and finally, in the conclusion
and discussion section, the importance and probable usage of this
model are explained.

2. Tumor–immune model

The continuous model used in this study is the two dimen-
sional Kuznetsov model (Kuznetsov et al., 1994). This model
includes two types of cells, i.e. tumor and immune cells. The
prototype of the model is described with a system of differential

equations:

_X ¼ s−dX þ gðX;YÞ−h1ðX;YÞ
_Y ¼ f ðYÞ−h2ðX;YÞ

(
ð1Þ

where, the variables X and Y are used to model the number of
immune cells and tumor cells respectively. The function f ðYÞ, in
the second equation is the tumor growth function. It involves the
mechanisms that control the growth. The iterated map of the
tumor growth time series is proved to be bell shaped (Galach,
2003; Kuznetsov et al., 1994; Ahmed, 1992; Voitikova, 1997). In the
Kuznetsov model, it is assumed to be the logistic function as below

f ðYÞ ¼ aYð1−bYÞ ð2Þ

In which the parameter a models the tumor growth rate, and the
parameter b determines the carrying capacity of the tumor in
the model.

In this model, the immune system in assumed to be composed
of two types of cells, i.e. NK and CTL cells. The NK cells, which are
always present, have a constant source of production which is
included by the constant term, s, in the model. The fraction of the
NK cells that die off is modeled by the term dX. The function
gðX;YÞ models the production of tumor specific immune cells, i.e.
CTLs. It should be an increasing function with respect to the tumor
cells, i.e. Y. It is assumed to be (Kuznetsov et al., 1994)

gðX;YÞ ¼ pXY
g þ Y

ð3Þ

where the parameter p models the maximum immune response
rate and the parameter g determines the steepness of immune
response in the model.

The functions h1ðX;YÞ and h2ðX;YÞ model the competitive
interaction of the tumor and immune cells. This interaction can
be modeled from different aspects. In this model, only the tumor–
immune conjugate pairs are considered. The conjugates are quies-
cent and do not reproduce, and only contribute in the crowding
effects. This crowding effect caused by conjugate pairs is modeled as
(Kuznetsov et al., 1994)

hðX;YÞ ¼ ξXY ð4Þ

where, the parameter ξ represents the fraction of immune or tumor
cells that are inactivated or killed in the conjugate pairs in the
model. Later in the model, ξ is replaced by parameters m, for the
fraction of inactivated immune cells, and n, for the fraction of killed
tumor cells due to interaction of cells

– Finally, the Model described by (eq. 1) can be written as:

f1 :
_X ¼ s−dX þ pXY

gþY −mXY

_Y ¼ aYð1−bYÞ−nXY

8<
: ð5Þ

The parameters of the ODE model (Eq. (5)) are estimated by
minimizing the difference between the model output and the data
points for BCL1 lymphoma in the spleen of chimeric mice for three
different groups of mice (Siu et al., 1986). Different initial numbers
of BCL1 cells were inoculated i.v. into each group of chimeric mice.
The initial number of BCL1 cells for groups one to three was
5�105, 5�106 and 5�107 respectively. The mice were followed
up for 70 to 110 days (Siu et al., 1986). At various intervals after
injection of BCL1 cells, animals were sacrificed, their spleens were
removed, and the tumor cells were counted (Siu et al., 1986). The
average number of tumor cells for mice in each group during the
follow up period (as shown in Fig. 1) is used to estimate the
parameters of the model. The initial number of effector cells is
assumed to be 3.2�105.
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