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H I G H L I G H T S

c A strategy based on multi-tasking learning is proposed to predict core cancer genes.
c Biological significance of these genes is evaluated using systems biology analyses.
c The strategy can be used as a general method to find important features.
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a b s t r a c t

Cancer is deemed as a highly heterogeneous disease specific to cell type and tissue origin. All cancers,

however, share a common pathogenesis. Therefore, it is widely believed that cancers may share

common mechanisms. In this study, we introduce a novel strategy based on multi-tasking learning

methods to predict core cancer genes shared by multiple cancers in the hope of elucidating common

cancer mechanisms. Our strategy uses two multi-tasking learning algorithms, one for feature selection

and the other for validation of selected features. The combined use of two methods results in more

robust classifiers and reliable selected features. The top 73 significant features, mapped to 72 genes, are

selected as core cancer genes. The effectiveness of the 73 features is further demonstrated in a blind

test conducted on an independent test data. The biological significance of these genes is evaluated using

systems biology analyses. Extensive functional, pathway and network analysis confirms findings in

previous studies and brings new insights into common cancer mechanisms. Our strategy can be used as

a general method to find important genes from large gene expression datasets on the genomic level.

The selected genes can be used to predict cancers.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer comprises more than 100 distinct diseases specific to
cell type and tissue origin (Stratton et al., 2009). All these diseases,
nevertheless, share key characteristics such as uncontrolled growth
and spread of abnormal cells (Lauffenburger and Kreeger, 2010).
Therefore it is widely believed that all cancers share a common
pathogenesis (Stratton et al., 2009). Elucidating common cancer
mechanisms will certainly enhance our ability to devise effective
therapeutics (Khalil and Hill, 2005) against the disease responsible
for one in eight deaths worldwide (Stratton et al., 2009).

Over the past several years, a few attempts have been made to
identify the core cancer genes, or the meta-signatures across a wide
range of cancer types by analyzing genome-wide gene expression
profiles from multiple microarray data sets (Lu et al., 2007;

Rhodes et al., 2004) (Segal et al., 2004), in the hope of discovering
common cancer mechanisms. These studies are part of an emerging
biological domain termed as cancer systems biology (Lauffenburger
and Kreeger, 2010). Computationally, the overall strategy in pre-
vious studies is to break the problem into a number of sub
problems, each of which is corresponding to a learning task on a
microarray data set for a specific type of cancer. After solving them
separately by independent and pairwise univariate analysis (e.g. t-
test), the results are then combined to identify the intersection of
significant differentially-expressed genes. Thus, these approaches
are single-task learning (STL) methods in nature and do not
consider the correlations between the sub problems (single tasks,
STs). Such approaches can only find the overlap of caner type-
specific genes, rather than cancer type-independent genes of multi-
ple cancers (Dawany et al., 2011). To overcome the drawbacks of
these methods, we propose a novel approach within the multi-task
learning (MTL) framework to find the core cancer genes by
simultaneously solving those STs.

Using a shared representation, MTL learns all participated STs
of a problem simultaneously by a global optimization approach
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based on an intuitive idea: the common knowledge shared by
related STs in a specific domain helps improving the performance
(Caruana, 1993). It has been empirically and theoretically demon-
strated that MTL can improve learning performance, compared to
learning STs separately (Argyriou et al., 2006). In addition, MTL
can be used to find the common knowledge and perform feature
selection to identify significant features shared by member STs.
Although MTL is very promising, it had not been applied to study
biological problems until very recently. For example, Zhang
et al. (2010) used MTL for gene expression analysis and Xu et al.
(2010) applied MLT in the prediction of subcellular location of
proteins. It has also been used in the prediction of siRNA efficacy
(Liu et al., 2010).

In this study, we attempt to discover core cancer genes using a
novel approach within the MLT framework. Our basic idea is that the
most significant features (genes) in discriminating normal samples
against cancer samples of various cancer types simultaneously using
the global optimization approach may reflect essential characteristic
of cancers and provide key information for finding common mechan-
isms more effectively than conventional STL approaches. First, we
compile a microarray dataset MetaCancer12 including 12 sub-data-
sets, each representing a ST of binary classification of cancer vs.
normal samples. We then merge these 12 STs into a MLT learning to
identify core cancer genes by combined use of two MTL methods, the
Multi-Task LS-SVMs (MTLS-SVMs) and the Multi-Task Feature Selec-
tion (MT-Feat3). MTLS-SVMs was introduced in our previous work
and MT-Feat3 is derived from a MTL framework which was originally
designed for regression (Argyriou et al., 2008).

Computationally, the main novelty of this study is that our new
strategy uses two MTL methods in feature selection: MT-Feat3 for
selecting common features from 12 STs and MTLS-SVMs for
validating the selected features. The theoretical basis of our
approach is that a feature set identified by a robust feature
selection algorithm should be robust to allow a different algorithm
to make high-accuracy predictions, even if the selected feature set
is not optimal for that algorithm (Das, 2001). Successive use of
these two methods combines the advantages of filter and wrapper
concepts. By doing so, the biases of the feature selection (MT-
Feat3) and the model learning (MTLS-SVMs) do not interact with
each other because MTLS-SVMs and MT-Feat3 implement two
different STL mechanisms: data amplification and feature selection
(Caruana, 1997). The data amplification mechanism of MTLS-SVMs
may help lessening the potential over-fitting problem on small
datasets when only one method (wrapper) is used to select and
validate features (Das, 2001).

As results, we identify 73 Affymetrix probe sets, out of a total
of 22,215 found in all samples, as core features of 12 cancer types.
The effectiveness of 73 features is cross-validated on the training
dataset and blind-tested on a large independent dataset. These 73
sets are then mapped to 72 core cancer genes. We perform
systems biology analysis for these 72 genes. Our results are
largely consistent with previous studies and also bring new
insights into possible common mechanisms of cancers.

2. Materials and methods

2.1. Dataset construction

The gene expression dataset MetaCancer12 used in this study
was compiled from the web resource ONCOMINE (http://www.
oncomine.org) (Rhodes et al., 2007) in February 2011. The
primary filtering criteria were set to ‘‘Differential Analysis’’
and ‘‘Cancer vs. Normal Analysis’’ to acquire the datasets fit for
binary classification. The platform filtering criterion was set to
‘‘Affymetrix U133’’ to minimize the platform variation. From

a total of 53 datasets passing the filtering steps, we selected 12
of them as the training dataset MetaCancer12 by the following
additional criteria:

1) Each dataset must be specific to one cancer type which
represents one single task.

2) The raw data (.CEL format) of each dataset is available online
so a standard data normalization process can be applied to
normalize all datasets.

3) If multiple datasets are available for any specific cancer type,
the most balanced one was chosen because unbalanced data
may cause predictors unreliable.

4) The largest one among datasets of the same cancer type was
chosen.

Overall, MetaCancer12 covered 12 common caner types:
pancreas, vulva, prostate, head–neck, leukemia, renal, lung, gas-
tric, esophagus, skin, colon and breast. We also used the remain-
ing 11 datasets as sub-datasets to constitute an independent test
dataset MetaCancer11. The detailed description of MetaCancer12
and MetaCancer11 can be seen in the Supplementary File 1.

2.2. Data pre-process and representation

Affymetrix U133 platform includes three types: Human Genome
U133 Plus 2.0 Array, Human Genome U133A 2.0 Array, and Human
Genome U133A&B. These types differ from the number of probe sets
presented in the chip. The shared genes of those three types of
microarray are represented by 22,215 Affymetrix identifiers which
are used as features to describe each sample. Cancer samples are
defined as positives and normal samples as negatives. Samples in 11
sub dataset are normalized by the Robust Multi-array Average (RMA)
algorithm (Irizarry et al., 2003) individually. Samples in the sub
dataset of oesophagus without raw data are normalized with
mean¼0 and standard deviation¼1 (Supplementary File 1). Finally,
the ith sample is represented by N¼22,215 features in such form
x
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2.3. STL methods

We build 12 independent classifiers based on Least Squares
Support Vector Machines (LS-SVMs) (Suykens and Vandewalle,
1999) for 12 STs (i.e. cancer sub-datasets). LS-SVMs classifiers
are also used as element classifiers in MTL (see the next section).
LS-SVM performs training faster than the standard SVM without
sacrificing generalization performance (van Gestel et al., 2004).
A fast algorithm is important to deal with large-scale and high
dimensional gene expression data for practical use. A LS-SVMs
classifier is obtained by solving a restricted optimization problem
as below:
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In LS-SVMs, the optimization problem can be solved by solving
the following linear equation:
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i is the sample and yi is its corresponding label; ei is the error;
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