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H I G H L I G H T S

c We propose an epidemic SIS model on an adaptive and weighted contact network.
c Fixed weights setting can trigger the epidemic incidence.
c The adaptivity of weights cannot change the epidemic threshold but it can accelerate the disease decay.
c Strong adaptivity can suppress the epidemic globally to a low level, but cannot exterminate it.
c In contact patterns the frequency plays a more important role in epidemic spreading than the intensity.
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a b s t r a c t

The heterogeneous patterns of interactions within a population are often described by contact

networks, but the variety and adaptivity of contact strengths are usually ignored. This paper proposes

a modified epidemic SIS model with a birth–death process and nonlinear infectivity on an adaptive and

weighted contact network. The links’ weights, named as ‘adaptive weights’, which indicate the intimacy

or familiarity between two connected individuals, will reduce as the disease develops. Through

mathematical and numerical analyses, conditions are established for population extermination, disease

extinction and infection persistence. Particularly, it is found that the fixed weights setting can trigger

the epidemic incidence, and that the adaptivity of weights cannot change the epidemic threshold but it

can accelerate the disease decay and lower the endemic level. Finally, some corresponding control

measures are suggested.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In epidemic processes, many infectious diseases spread directly
from one individual to another via physical interactions. Therefore,
contact networks with nodes representing individuals and links
representing interactions have become a popular framework for
investigating the epidemic spreading dynamics. Such networks can
be used to visualize the outbreak of infection (Andre et al., 2007;
Eames, 2008), to predict thresholds (Givan et al., 2011), to form a
basis of modeling new approaches and to identify key individuals for
intervention (Christley et al., 2005; Eames et al., 2009). Many
numerical and analytical results have shown that the topologies of
the underlying networks have a strong impact on the spread of
infections, e.g., implying or indicating the absence of an epidemic
threshold (Pastor-Satorras and Vespignani, 2001; Moreno et al., 2002)

and the hierarchical spreading patterns of epidemic outbreaks
(Barthelemy et al., 2005).

Recent studies have demonstrated that many large-scale
systems, such as the Internet, biological and social networks,
exhibit heterogenous topological properties, particularly scale-
free network feature (Albert and Barabasi, 2002). In a thorough
survey of human social mixing, heterogeneity has also been
observed both in contact numbers and in link weights (Read
et al., 2008). Based on contact networks, some epidemic models,
such as SI (Barthelemy et al., 2005), SIS (Pastor-Satorras and
Vespignani, 2001) and SIR (Moreno et al., 2002), have been
investigated, yet there are some inappropriate assumptions such
as closed populations, i.e., the total number of individuals stay
invariant during the whole epidemic duration. Since some dis-
eases can be persistent to last for an individual’s life time, it is
interesting to study the impact of birth and death on the
spreading dynamics (Sanz et al., 2010; Liu et al., 2004; Zhang
and Jin, 2011). In Sanz et al. (2010) an epidemiological model with
constant birth and death rates was investigated to obtain
dynamics of Tuberculosis-like infection. In Liu et al. (2004),
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it was suggested that empty nodes give birth to individuals with
certain rate, which may be not very reasonable however. On the
other hand, many current network models ignore the interaction
strength and assume that each link is equivalent. Notice that
many real networks are intrinsically weighted: their nodes and
links have different weights, and the variations of their interac-
tion strengths are essential for carrying out their basic functions.
Examples include the internet traffic (Pastor-Satorras and
Vespignani, 2004) and the flows of passengers in the airline
network (Barrat et al., 2004a). The differences between links
within a contact network can be described by link weights, which
can represent the amount of time two individuals interact or the
intimacy or proximity of their encounters (Boccaletti et al., 2006;
Newman, 2004; Yan et al., 2005; Read et al., 2008; Barrat et al.,
2004c). The link weights provide a way to assess the chance that
the disease spreads along the links (Eames et al., 2009). The larger
a weight is, the more intensively the two end-nodes commu-
nicate, so the more possible the susceptible individual becomes
infected. Recently, it was shown that by using contact weights to
evaluate an individual’s influence on an epidemic process, indi-
vidual infection risk can be estimated so that targeted interven-
tions can be applied effectively (Eames et al., 2009). By assigning
links’ weights to denote familiarity, it was pointed out that the
nodes with larger weights are preferential to be infected and that
large dispersion of weights results in slower spreading (Yan et al.,
2005). Further, it was found that the infectivity exponent has a
stronger effect on the epidemic threshold and on the epidemic
prevalence than the weight exponent (Chu et al., 2011). The usual
assumption is that weights are constant and driven through the
network connectivity, which is fixed as time goes on. For example,
the weight between two nodes with degrees i and j are repre-
sented by a function of their degrees (Barrat et al., 2004a,b,c).
However, as the disease progresses and the situation becomes
severe, individuals tend to be more cautious in social contacts and
employ some reactions such as decreasing the out-going visits,
cutting down the meeting time, and reducing the intimacy. Such
behaviors will change the strengths of nodes and the weights of
links, which corresponds to an adaptive weighted network by nature.

Moreover, most network models assume that each infected
individual can establish contacts with all its neighbors, namely,
the infectivity of each infected node equals to its degree. But in
practical situations, an individual cannot contact with all its
acquaintances within a short time, especially when he/she is ill.
To take this fact into account, it was suggested that the infectivity
is a constant (Zhou et al., 2006). Later, a piecewise linear
infectivity was introduced (Fu et al., 2008). Actually, infectivity
can admit much more complicated nonlinear expressions for
different populations and epidemics (Zhang and Fu, 2009).

In this paper, motivated by the above observations, we
propose a modified SIS model with birth and death of individuals,
which would be more reasonable and precise to analyze a long-
lasting epidemic spreading in an open population. To account for
different cases of transmission and infectivity, we introduce
general forms of the weight function and infectivity function.
The weights correspond to the intimacy or familiarity between
two connected individuals, whose role is reflected by the infection
rate. Particularly, due to people’s health-conscious behavior, the
weights will reduce as the disease propagates, which we call
‘adaptive weights’. We investigate the threshold, dynamics and
propagation behavior of the model, and analyze the influence of
weights on epidemic spreading.

The rest of this paper is organized as follows. In Section 2, we
build the model via dynamical differential equations. Then we
present a global analysis of the model in Section 3. In Section 4,
we have some discussions on related issues and perform some
numerical analysis. We finally conclude the paper in Section 5.

2. Model formulation

To simulate the process of interaction, a complex network N is
established and individuals are spatially distributed on this net-
work, where each node of N is either vacant or occupied by one
individual. In an epidemic spreading process, every node has
three optional states: vacant state, healthy individual occupation,
infected individual occupation (Liu et al., 2004). Each node can
change its state at a certain rate. Individuals can generate off-
springs into neighboring vacant sites at a birth rate b. In other
words, a birth event occurs at a vacant node next to a non-vacant
node at rate b, which also depends on the number of neighboring
individuals. Due to the physiological limitation, it is assumed that,
at each time step, every individual generates the same birth
contacts A, here A is a constant. Furthermore, it is assumed that
healthy (infected) individuals give birth to healthy (infected)
children. Meanwhile, a healthy individual can be infected through
contact if it is connecting to an infected one, while an infected
individual can be cured at rate m. All individuals die at rate d,
namely, the disease is not fatal. If an individual dies, the occupied
node becomes vacant.

In order to account for the heterogeneity of contact patterns, it
is needed to consider the difference of node degrees. Let Sk(t) and
Ik(t) denote the densities of susceptible and infected individuals
with degree k at time t, respectively. SðtÞ ¼

P
kPðkÞSkðtÞ and

IðtÞ ¼
P

kPðkÞIkðtÞ are the average densities of susceptible and
infected individuals, respectively, where P(k) is the probability that
a randomly chosen node has degree k. Let the density of nodes with
the same degree be unity after normalization, and then the density
of the vacant nodes with degree k is 1�SkðtÞ�IkðtÞ. Therefore, the
evolution processes of Sk(t) and Ik(t) are governed by the following
differential equations:

dSkðtÞ

dt
¼ bk½1�SkðtÞ�IkðtÞ�

P
i

A

i
Pði9kÞSiðtÞ�dSkðtÞ�kSkðtÞYkðtÞþmIkðtÞ,

dIkðtÞ

dt
¼ bk½1�SkðtÞ�IkðtÞ�

P
i

A

i
Pði9kÞIiðtÞþkSkðtÞYkðtÞ�ðdþmÞIkðtÞ,

8>>><
>>>:

ð2:1Þ

where

YkðtÞ ¼
X

i

Pði j kÞ
jðiÞ

i
likIiðtÞ, ð2:2Þ

with initial conditions

fðSkð0Þ,Ikð0ÞÞ90rSkð0Þr1,0r Ikð0Þr1,0oSkð0Þþ Ikð0Þr1,k¼ 1,2, . . .g

and b,d,m, and l are positive constants. The meanings of the
parameters and variables in model (2.1) are as follows:

� Pði9kÞ is the probability that a node of degree k is connected to
a node of degree i. This paper focuses on degree uncorrelated
networks. Hence, Pði9kÞ ¼ iPðiÞ=/kS, where /kS¼

P
iiPðiÞ is the

average degree of the network. For a general function dðkÞ, it is
defined as /dðkÞS¼

P
idðiÞPðiÞ.

� bk½1�SkðtÞ�IkðtÞ�
P

iðA=iÞPði9kÞSiðtÞ represents the new born sus-
ceptible individuals per unit time, which is proportional to
the connectivity degree k, the densities of vacant nodes
ð1�SkðtÞ�IkðtÞÞ and susceptible individuals Sk(t). The factor
1=i accounts for the probability that one of the neighboring
individual of a vacant node, with degree i, will activate this
node at the present time step. bk½1�SkðtÞ�IkðtÞ�

P
iðA=iÞPði9kÞIiðtÞ

has a similar meaning. Without loss of generality, we set A¼1.
� d is the natural death rate. So 1=d is the average life span.

There is no disease-related death, since the disease is assumed
not fatal.
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