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H I G H L I G H T S

c Connection between two methodologies, flux coupling analysis and chemical reaction network theory, is established.
c Flux-focused approaches and concentration-centric approaches are bridged.
c Two mappings are introduced, of which one is a homomorphism, and which provide an interface between the two approaches.
c The mathematical formulation relies on the simple concepts of equivalence classes, partitions and lattices.
c The approach can reveal a significant reduction of complexity of the considered chemical reaction network.
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a b s t r a c t

Robustness of biochemical systems has become one of the central questions in systems biology

although it is notoriously difficult to formally capture its multifaceted nature. Maintenance of normal

system function depends not only on the stoichiometry of the underlying interrelated components,

but also on the multitude of kinetic parameters. Invariant flux ratios, obtained within flux coupling

analysis, as well as invariant complex ratios, derived within chemical reaction network theory, can

characterize robust properties of a system at steady state. However, the existing formalisms for the

description of these invariants do not provide full characterization as they either only focus on the flux-

centric or the concentration-centric view. Here we develop a novel mathematical framework which

combines both views and thereby overcomes the limitations of the classical methodologies. Our unified

framework will be helpful in analyzing biologically important system properties.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Biochemical networks have evolved to operate in the face of
internal and external perturbations (Kitano, 2004). The response to
these perturbations has shaped the systemic architectural blueprint
comprising multiple layered and interrelated components (e.g., genes,
proteins, metabolites). The dynamic processes involving network-
related biochemical components depend on a multitude of kinetic
parameters, which remain elusive even for medium-size systems.
Therefore, methods establishing a connection between structure and
dynamics of biochemical systems hold the promise to enable the
rigorous study of processes taking place on the underlying biochem-
ical networks both at steady-state as well as dynamic setting.

Two different classes of approaches have been developed to
facilitate parameter-independent analysis of biochemical networks:
(i) flux-focused approaches, including: flux balance analysis (FBA)
(Varma and Palsson, 1994) and its derivatives–flux variability analysis

(FVA) (Mahadevan and Schilling, 2003) and flux coupling analysis
(FCA) (Burgard et al., 2004; Marashi and Bockmayr, 2011), elementary
flux modes (EFMs) (Schuster et al., 2000), and extreme pathways
(Schilling et al., 1999); and (ii) concentration-centric approaches,
rooted in chemical reaction network theory (CRNT) (Horn and
Jackson, 1972; Feinberg, 1979, 1995) and stoichiometric network
analysis (Clarke, 1988).

Given a biochemical network, FBA relies on a linear program-
ming formulation to calculate the steady-state fluxes under
the assumption that the investigated organism operates toward
optimizing an objective function (e.g., optimizing yield for meta-
bolic networks (Varma and Palsson, 1994)). FVA also has a linear
programming formulation, with the aim of calculating the mini-
mum and maximum values of individual steady-state fluxes for a
particular value of the objective. FCA can be used to determine
pairs of reactions whose flux ratio is the same in each steady state
under the same environmental conditions. Like FBA and FVA, this
approach can also be cast as a linear program. On the other hand,
approaches based on EFMs allow decomposition of a given net-
work into its smallest functional units operating in a steady state
(Schuster et al., 2000; Schilling et al., 1999). Although the problem
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of determining the set of all EFMs for a given biochemical network
is computationally demanding, recent parallelized implementations
of algorithms for EFM computation facilitate EFM-based analysis of
genome-scale metabolic networks (Terzer and Stelling, 2008).
Essential to both flux-based approaches is the usage of the under-
lying stoichiometric matrix which, without a specified kinetics,
cannot be employed to make statements about steady-state meta-
bolite concentrations.

In contrast, CRNT uses mass-action formulation to study the
qualitative behavior of the steady-state concentrations of the
components regardless of the parameter values, i.e., for all steady-
state reaction fluxes of the mass-action system satisfying the
constraints imposed by the stoichiometry. The results of this frame-
work answer questions related to the possibility for existence of
multiple steady states, and rely on a structural index determined by
interleaving the graph-theoretic and stoichiometric descriptions of
the investigated network (Horn and Jackson, 1972; Feinberg, 1979,
1995; Gunawardena, 2003; Conradi et al., 2007).

Biochemical network invariants are of particular interest
specifically because they relate to the principle of homeostasis.
For instance, under the steady-state assumption, the concentra-
tions of components do not change and, thus, are invariant.
However, invariants in biochemical networks can be defined not
only with respect to changes over time, but also changes with
respect to different steady states that the system may assume
under same environmental conditions (i.e., initial conditions and/
or constraints). Note that the latter excludes the analysis of trivial
invariants which are imposed in the form of conservation rela-
tions (Schilling et al., 1999; Heinrich and Schuster, 1996).

In other words, invoking the steady-state assumption may
induce additional invariants with respect to individual compo-
nents or their combinations, which can ultimately reveal possible
reduction in complexity of the system. As already stated, FCA
provides the means for determining pairs of reactions whose ratio
of fluxes is the same in each steady state the system may assume.

In general, changes in fluxes and concentrations, as key descrip-
tors of the transitional behavior in biochemical networks, depend on
each other. This stems from the fact that the reaction rate, i.e., flux, is
cast as a function of the concentrations of the considered compo-
nents. Therefore, the question arises whether there exist invariants
on the level of concentrations and, if so, whether there is a connec-
tion between flux- and concentration-invariants. The answer to this

question of course depends on the choice of kinetic law providing
the relation between reaction fluxes and concentrations.

Here, we focus on mass action kinetics, representing the simplest
and most fundamental law of kinetics, to establish a connection
between flux and concentration-invariants. By interleaving the
flux- and concentration-invariants, we provide a fundamentally
new theoretical approach which can be used to uncover dependen-
cies between fluxes and between concentrations, ultimately leading
to a better understanding of system complexity.

Therefore, our study establishes a connection between the
two different views of computational systems biology—the flux-
centric and the concentration-centric view. Since the theories and
methods pertaining to the two views use different notations, a
brief overview is provided to describe the used notation.

2. Methods

In chemistry, the law of mass action was established by Guldberg
and Waage in the nineteenth century (Guldberg and Waage, 1899;
Abrash, 1986). It assumes a mixture of large numbers of components
which are homogeneously distributed, allowing approximation of the
components’ behavior with continuous variables. A reversible reac-
tion, i.e., a reaction which can proceed in the forward and backward
direction, is split into two reactions—the irreversible forward reaction

and the irreversible backward reaction. The components consumed
by an irreversible reaction are called substrates, while those produced
are referred to as products. A reaction’s rate is then modeled to be
proportional to the product of the concentrations of the participating
substrates, especially in the case of an elementary reaction which
cannot be further divided into intermediate steps (Moore, 1986,
p. 385). Under realistic chemical conditions, it is often the case that
a given reaction almost certainly proceeds in one direction. In this
situation, with the assumption that the reaction rate in one of the
directions can be neglected, the reaction is treated as irreversible.
Therefore, most models of biochemical networks consist of a mixture
of reversible and irreversible reactions.

Here, for the application of specific theoretical methodology,
each biochemical network must be transformed to an equivalent
one that consists only of irreversible reactions. Such a transforma-
tion is performed as follows (Gagneur and Klamt, 2004): Let the
complete set of reactions be denoted by R¼Rirr [Rrev, where Rirr

denotes the subset of irreversible reactions and Rrev the subset of
reversible reactions. The set of reactions R0irr is derived by splitting
each reversible reaction from Rrev into two irreversible reactions,
one in each direction. The original network can then be described by
a new set of reactions R0 ¼R0irr [Rirr with 9R09¼ 29Rrev9þ9Rirr9.
The starting point for our methodologies derived here is always a
biochemical network which is of this form, i.e., we assume that R
denotes a set of irreversible reactions (see Example 1).

Example 1. The eight irreversible reactions in the set R¼ fR1,R2,
R3,R4,R5,R6,R7,R8g, given by

R1 :¼ A-X R5 :¼ AþC-D

R2 :¼ X-A R6 :¼ D-AþC

R3 :¼ B-X R7 :¼ BþC-E

R4 :¼ X-B R8 :¼ E-BþC,

can in fact be regarded as four reversible reactions. The reversible
reactions are formed by R1 and R2, R3 and R4, R5 and R6 as well as R7

and R8.

The results from flux-centric approaches rely on investigating
vector spaces associated with the stoichiometric matrix N (see
Example 2). The principal object in the flux-centric approaches is
given by the reactions and their fluxes in which the flux is defined as
the turnover rate of molecules in a metabolic network. Here the
term ‘‘flux of reaction Ri’’ is used synonymously to ‘‘reaction rate of
Ri’’. A crucial vector space is that of the kernel of the stoichiometric
matrix N, which is represented by the set of flux vectors v that fulfill
Nv¼ 0 and which describe the possible steady-state fluxes (positive
and negative) of the considered biochemical system. Thus, the
kernel of N describes all possible steady-state fluxes of the con-
sidered biochemical system.

Example 2. The set of reactions from Example 1 give rise to the
following stoichiometric matrix:

N¼

R1 R2 R3 R4 R5 R6 R7 R8

�1 1 0 0 �1 1 0 0

0 0 �1 1 0 0 �1 1

0 0 0 0 �1 1 �1 1

0 0 0 0 1 �1 0 0

0 0 0 0 0 0 1 �1

1 �1 1 �1 0 0 0 0

2
666666664

3
777777775

A

B

C

D

E

X:

The concentration-centric approaches, represented by CRNT,
use a notation which combines linear algebra and set theory
(Gunawardena, 2003). For a given set of reactions, the set of
complexes C is composed of the left- and right-hand sides of each
reaction arrow. Any reaction y-y0AR can then easily be defined
in terms of its complexes y,y0AC.

J. Neigenfind et al. / Journal of Theoretical Biology 317 (2013) 359–365360



Download English Version:

https://daneshyari.com/en/article/6370970

Download Persian Version:

https://daneshyari.com/article/6370970

Daneshyari.com

https://daneshyari.com/en/article/6370970
https://daneshyari.com/article/6370970
https://daneshyari.com

