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The classic endemic model is used by Kuske et al. (2007) to study recurrence of childhood infections,

which is a well-known but not well understood phenomenon. The conditions for recurrence that they

derive are shown to agree with conditions for persistence.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Childhood infections in large populations tended to recur with
a remarkable regularity before the time when large scale vaccina-
tion was administered. This fact has posed a large challenge to
mathematical modellers over a long time. There is a strong need
to understand the mechanism that causes this behavior. It has
been known since the time of Hamer (1906) and Soper (1929)
that one needs to account for both demographic changes in the
population of human hosts and the influence of infection and
recovery to study this phenomenon. The search for further insight
has proceeded on two different paths, one deterministic and the
other one stochastic. Deterministic modellers have noted that
their models predict that the number of infected individuals
approaches an endemic infection level through damped oscilla-
tions, and that the damping does not agree with observations.
Therefore, they have argued that additional factors need to be
introduced in order to produce undamped oscillations. Review
papers are given by Hethcote and Levin (1989) and by Bauch
(2008). In addition to models with periodic forcing, one has
studied models with delays, models with nonlinear incidence,
models with variable population size, models with age structure,
models with varying distributions of latent and infectious periods,
models with chaos, and models with quarantine.

A completely different path, namely the stochastic one, was
opened by Bartlett (1956). He suggested that a fully stochastic
model would account for the observed recurrence of childhood
infections, without any additional factors. He supported this
suggestion by numerical simulation of a model that accounted
for infection and recovery, and also for inflow of uninfected
individuals, corresponding to a demographic force. Fifty years
later, Bartlett’s remarkable intuition in this regard has been
beautifully supported by the model analysis given by Kuske
et al. (2007). Their model is similar to the one used by Bartlett,
but not identical. One important result in their paper is given by
two criteria for the occurrence of sustained oscillations.

These criteria can be given simpler forms by careful treatment
of the parameter space. The main aim of the present note is to
derive these simplified expressions. The rather long discussion by
Kuske et al. of the parameter ranges where the two criteria for
sustained oscillations are satisfied can be materially shortened by

use of our simplified expressions. We give also a slight improve-
ment of the analysis of the deterministic version of the model.

The recurrence in the model is caused by demographic
stochasticity sustaining nearly periodic oscillations. This phenom-
enon is called coherence resonance, as described by Kuske et al.
(2007).

2. The model

The model analyzed by Kuske et al. was termed ‘‘the classic
endemic model’’ by Hethcote (2000). Its deterministic version was
analyzed by Hethcote (1974), while its stochastic counterpart was
used by Nåsell (1999, 2005), in studying infection persistence and
extinction times and the associated so-called critical community
size. The model takes the form of a bivariate Markov chain
fðSðtÞ,IðtÞÞg, where S(t) stands for the number of susceptible indivi-
duals, and I(t) for the number of infected individuals at time t.

This stochastic process is based on the hypothesis that the four
transitions listed in Table 1 take place with the rates listed.
The model contains four parameters, namely the expected
population size N, the death rate per individual m, the contact
rate b, and the recovery rate per infected individual g.

It is important for the analysis to carry through a reparame-
trization based on dimensional analysis and scaling. The method
is known to be very useful for deterministic models in physics. It
is discussed by Lin and Segel (1974), while its application to
population biology models is described by Nåsell (1985). In this
latter reference it is argued that population sizes, even though
they are free from physical dimension, have what can be called
‘‘quasi-dimension’’. The desirability of non-dimensionalization is
stressed. This is achieved by scaling that introduces parameters
and state variables in the deterministic version of the model that
are free of both physical dimension and quasi-dimension. Any
parameter that can be eliminated by the simple expedient of
scaling either a state variable or the independent variable repre-
senting time is called ‘‘innocent’’, while all other parameters are
called ‘‘essential’’. These ideas are discussed by Nåsell (2002).

Kuske et al. introduce a dimensionless version of the model
they study, but they do not pursue the nondimensionalization of
the parameter space in a consistent way.
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We reparametrize as in Nåsell (1999, 2005) by defining R0 and
a as follows:

R0 ¼
b

gþm
, a¼ gþm

m
: ð1Þ

Both of these parameters are free of dimension, and therefore
independent of units of measurement. The first of these two new
parameters, R0, is referred to as the basic reproduction ratio. It
serves the important role of identifying the threshold of the
deterministic version of the model at R0 ¼ 1. The second of the
two parameters, a, is the ratio of average life length to average
duration of infection. Therefore, a is large for common childhood
infections. As an example, we note that a for measles in a
developed country is about 3500, where the average life length
is 1=m¼ 70 years, and an infection lasts on the average about one
week. The definition of R0 is also given by Kuske et al., but they do
not define a. In what follows, we shall use R0 and a, but not b or g.

After the reparametrization we still have four parameters,
namely N, R0, a, and m. Among these parameters, we note that m
is innocent, since it can be eliminated by rescaling of time. Its
inverse 1=m serves as a natural time unit for the model. Its value
clearly depends on the time unit chosen. We shall find that the
conditions for recurrence are independent of m, and therefore
independent of the time unit. Furthermore, N is innocent for the
deterministic model, but not for the stochastic one. The two new
parameters, R0 and a, are free of quasi-dimension, but N and m are
not. In the analysis of the stochastic version of the model, we use
the facts that both N and a are large.

In the analysis of this model by Nåsell (1999, 2005), approxima-
tions of the quasi-stationary distribution and of the time to
extinction are derived. It is noted that qualitatively different results
are obtained in three separate parameter regions. The identification
of these regions makes use of a reparametrization that is expressed
with the aid of a parameter r, defined as follows:

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR0�1ÞN

p
a : ð2Þ

The three parameter regions are defined using asymptotic concepts
as N-1. Thus, there are two regions defined by R041 and R0o1,
respectively, as N-1, and a third region, called the transition
region, defined by requiring that r¼Oð1Þ as N-1. We note from
the definition of r that R0-1 as N-1 in the transition region. We
note also that r-1 as N-1 in the region where R041. This
parameter region leads to a normal distribution of the marginal
distribution of infected individuals in quasi-stationarity and to a
large time to extinction. This is therefore the parameter region of
interest in the study undertaken by Kuske et al. (2007).

3. The deterministic version of the model

The deterministic version of the model leads to the following
system of differential equations for the state variables S and I:

S0 ¼ mN�
amR0

N
SI�mS, ð3Þ

I0 ¼
amR0

N
SI�amI: ð4Þ

Note that we use the essential parameters R0 and a here, and not
the original rates b and g. The equations also contain the innocent
parameters N and m. Both of them can be eliminated by using the
scalings introduced by Kuske et al. and given below.

The system of differential equations above has two critical
points, namely ðN,0Þ and ðSeq,IeqÞ, where the coordinates of the
second of these points are defined as follows:

Seq ¼
N

R0
, ð5Þ

Ieq ¼
ðR0�1ÞN

aR0
: ð6Þ

The first of these critical points corresponds to absence of
infection, while the second one corresponds to an endemic
infection level provided R041. Bifurcation occurs at R0 ¼ 1, where
the deterministic model has a threshold. The solutions of the
deterministic model approach the endemic infection level ðSeq,IeqÞ

as t-1 if R041 and Ið0Þ=N40. For realistic parameter values,
these solutions show damped oscillations.

We follow Kuske et al. and introduce the dimensionless state
variables

u¼
S�Seq

Seq
, ð7Þ

v¼
I�Ieq

Ieq
: ð8Þ

Applying these scalings in (3) and (4) will lead to elimination of N,
which is an innocent parameter for the deterministic version of
the model.

Furthermore, we define

o¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðR0�1Þ�R2

0=4
q

ð9Þ

and

O¼ mo, ð10Þ

where O is the angular frequency of the damped oscillations with
which the solutions of the deterministic model approach the
endemic infection level. We note that Kuske et al. also use O to
denote this angular frequency, but that the expression they use
for O is an approximation, while our expression is exact. Clearly,
O has the same dimension as m, while o is free of dimension. Note
also that o is large, since a is.

We use O to define a dimensionless time s by setting

s¼Ot: ð11Þ

The deterministic model for the scaled state variables u and v as
functions of the scaled time s leads to the following system of
differential equations:

_u ¼�
R0

o u�
R0�1

o ðvþuvÞ, ð12Þ

_v ¼
a
ouþ

a
ouv, ð13Þ

where derivatives with respect to s are denoted by a dot. Note
that this system of equations contains only two parameters,
namely the two essential parameters R0 and a.

We shall in particular be interested in the linearization of this
system of differential equations about u¼0 and v¼0. The linear-
ized system can be written as follows:

_u

_v

� �
¼M

u

v

� �
, ð14Þ

Table 1
Transition rates for the stochastic version of the classic

endemic model.

Transition Transition rate

ðS,IÞ-ðSþ1,IÞ mN

ðS,IÞ-ðS�1,IÞ mS

ðS,IÞ-ðS�1,Iþ1Þ bSI=N

ðS,IÞ-ðS,I�1Þ ðmþgÞI
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