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HIGHLIGHTS

» Heterogeneous damages in radiotherapy are explained by a Markov chain.

» Explained variables are the cell and tumor lifespans.

» The mean value of the tumor lifespan is approached by a log function.
» Tumor control probability can be derived from the tumor lifespan.

» The appropriate treatment planning is deduced from a ROC curve.
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This paper deals with the lifespan modeling of heterogenous tumors treated by radiotherapy. A bi-scale
model describing the cell and tumor lifespans by random variables is proposed. First- and second-order
moments as well as the cumulative distribution functions and confidence intervals are expressed for
the two lifespans with respect to the model parameters. One interesting result is that the mean value of
the tumor lifespan can be approached by a logarithmic function of the initial cancer cell number.
Moreover, we show that TCP and NTCP, used in radiotherapy to evaluate, optimize and compare
treatment plans, can be derived from the tumor lifespan and the surrounding healthy tissue,
respectively. Finally, we propose a ROC curve, entitled ECT (Efficiency-Complication Trade-off), suited
to the selection by clinicians of the appropriate treatment planning.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer is a disease that affects millions of people worldwide.
One of the common therapies used to treat cancer is external
beam radiotherapy. The ionizations induced by radiation cause a
variety of possible lesions in cells (Curtis, 1986) and the most
harmful damage are the lesions that affect the DNA structure
(Wyman and Kanaar, 2006; Hoeijmakers, 2001). Probabilistic
modeling is a helpful tool for describing these biological damages.
For instance, the tumor control probability (TCP) (Zaider and
Minerbo, 2000; Dawson and Hillen, 2006; Gay and Niemierko,
2007) and the normal tissue complication probability (NTCP)
(Lyman, 1985; Kallman et al, 1992) are used to characterize
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and evaluate the radiotherapy treatment planning. Their mathe-
matical expressions can be derived from different stochastic
models of the tumor response such as the linear quadratic model
(Fowler, 1989; Zaider and Minerbo, 2000), cell population-
dynamic models (Sachs et al., 2001), mixed-effects behavioral
models (Bastogne, 2010) and cell cycle models (Kirkby et al.,
2002). The main drawback of those mathematical representations
is their inability to handle biological heterogeneity. There are
different types of heterogeneity (Michelson and Leith, 1997) but
we have chosen to focus on the tumor damage heterogeneity. A
large majority of models suppose that the cell sensitivity to
radiation is constant during the treatment and over the entire
cell population. Meaning that a surviving cell is thought to be as
viable as an unirradiated cell and that all cells are supposed to
have the same survival probability. However, evidence suggests
that a damaged cell partially loses its ability to resist. As stressed
in Gupta et al. (2011) and Durrett et al. (2011), the intratumor
heterogeneity of cell phenotypes or damage is of direct clinical
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importance. Therefore, the clinical challenge is to define the
suited treatment duration for each patient by accounting for
variability of the therapeutic response.

In a previous study (Keinj et al., 2011), we proposed a multinomial
model of tumor response based on a discrete-time Markov chain. This
model is derived from the Target Theory and assumes that there exists
a number of radio-sensitive sites within the cell, called targets. The
cell death is finally caused by the deactivation of those targets by
radiation particles. We showed in Keinj et al. (2011) that the multi-
nomial model is a generalization of typical target models (Chapman,
2007; Pollard et al., 1955), able to account for the heterogeneity of cell
damage caused by the treatment. However, like the majority of
models used to measure the tumor response to treatment, the
multinomial model examines the number of surviving cells in the
tumor and not the tumor lifespan.

In this paper, we firstly address the stochastic modeling of the
tumor lifespan. We start by considering the lifespan of a single
cancer cell that behaves as described in Keinj et al. (2011). It is
important to emphasize that the cell lifespan is the minimal
random number of radiation dose fractions to be applied to kill
the cell. We study this random time by calculating its mean,
variance and cumulative distribution function. We then assume
that a tumor is a group of independent cells. This allows us to
define the lifespan of the tumor as the maximum of individual
lifespans. In practice, the tumor lifespan is of clinical importance
since it corresponds to the minimal number of radiation dose
fractions (i.e., treatment duration) to be applied to completely
eradicate the tumor. When the initial number nq of cancer cells is
not too large, we can explicitly calculate the mean, variance and
the cumulative distribution function of the tumor lifespan. When
ng is large, the previous parameters are no longer calculable.
However, we show that, under some assumptions, the mean
lifespan of the tumor behaves as a logarithmic function of the
initial number ng. The second goal is to show that TCP and NTCP
can be completely formulated with respect to the tumor and
normal tissue lifespans. These expressions of TCP and NTCP are
finally used to propose a ROC curve, called ECT (Efficiency-
Complication Trade-off), suited to the determination of the
appropriate treatment schedule.

This paper is structured as follows: in Section 2 we give a
reminder of the individual cell behavior (cf. Keinj et al., 2011). In
Section 3, we study the cancer cell lifespan T as a random variable,
determining its mean, variance and confidence intervals and a
related set of numerical results is given. We introduce the tumor
lifespan L in Section 4, taking the cell proliferation into account
and we study theoretically and numerically this random variable.
Expressions for TCP and NTCP are given in Section 5. Before
concluding, we also propose the ECT diagram.

2. Behavior of a single cell

The main notations used thereafter are presented in Table 1
and log(-) denotes the natural logarithm function. In Keinj et al.
(2011), a multinomial model of tumor growth relying on the
target and hit modeling paradigm and based on a discrete-time
Markov chain has been proposed. We keep the same modeling
assumptions stated in Keinj et al. (2011). Since they play a crucial
role in our model, we should briefly recall them:

e a cell has m targets;

e each target may be made inactive after the application of a
fraction dose ug with a probability g. The relationship between
q and up is given in (5);

e the cell death, due to radiation, happens when the m targets
are deactivated;

Table 1
Main notations.

Notations Definition

Discrete time related to the kth dose fraction

Magnitude of each dose fraction

Number of deactivated targets in the cell

Transition matrix associated with the Markov chain (Z;)

Matrix associated with treatment effects

Matrix associated with cell repair process

Number of targets in a cancer cell

Probability to deactivate a target in a cancer cell

Probability for an inactive target to be reactivated in a cancer cell
Cancer cell lifespan

Cumulative distribution function of T

1-0 confidence interval of T

Initial total number of cancer cells in the tumor

Lifespan of the tumor

Cumulative distribution function of L

1-0 confidence interval of L

Number of targets in a normal cell

Probability to deactivate a target in a normal cell

Probability for an inactive target to be reactivated in a normal cell
Normal cell lifespan

Cumulative distribution function of T

Initial total number of normal cells in the irradiated zone
The complication threshold number of dead normal cells
Lifespan of the normal tissue
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e between two consecutive dose fractions (ie. during 24 h
separating two dose fractions in a conventional daily fractio-
nated radiation schedule), if the cell is still alive then an
inactive target may repair with a probability r;

e we suppose that cancer cells that compose the tumor all have
the same phenotype;

e to reduce complexity of the model, cell cycle positions are not
accounted for;

e we assume that there is no delay effect between the radiation
dose applied to the mother cell and the damage consequences
on daughter cells.

Let Z, be the random variable denoting the number of deactivated
targets in the cell at time k, i.e. after the kth dose fraction. k=0
corresponds to the beginning of treatment. Moreover, we assume
that a constant fraction dose (typically uy =2 Gy) is applied every
day. We suppose that (Zy) is a discrete-time Markov chain, i.e. the
cell state at time k+1 only depends on the current state at time k.

2.1. Probability distribution of Z

Let IT be the corresponding transition matrix of (Z). We briefly
define I, interested readers can refer to Keinj et al. (2011) for
details. The dynamics of (Z;) takes the effects of dose fractions and
repair mechanisms into account

IT =PR, M

where P models the treatment effects and R describes repair
mechanisms and given as follows:

m—i s mei
P(i,j) = (j—i>q’(l_q) hoisi @)
0, j<i
B <l.>ri‘f(1r)f, j<i<m,
RG@jH=4 \J 3)
0, i<j.

When i=m, Rim,m)=1 and R(m,j)=0 for 0 <j <m.
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